【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi),若存在過點(diǎn)P的直線交圓C于A、B兩點(diǎn),且△PBC的面積是△PAC的面積的2倍,則實(shí)數(shù)m的取值范圍為

【答案】( ,4)
【解析】解:點(diǎn)P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi), ∴1﹣2+m2﹣4m+1<0,
解得0<m<4;
又圓C化為標(biāo)準(zhǔn)方程是(x+m)2+(y﹣1)2=4m,圓心C(﹣m,1);
∵△PBC的面積是△PAC的面積的2倍,
∴PB=2PA,
設(shè)直線l的方程為:y=kx+1.
圓心C到直線l的距離d= =
=3 ,可得:9m2﹣4m=10d2=10× ,
∴9﹣ = ∈[0,10),
解得:
當(dāng)m= 時(shí),四點(diǎn)共線沒有三角形,
∴實(shí)數(shù)m的取值范圍為( ,4).
所以答案是:( ,4).

【考點(diǎn)精析】通過靈活運(yùn)用點(diǎn)與圓的位置關(guān)系,掌握點(diǎn)與圓的位置關(guān)系有三種:若,則點(diǎn)在圓外;點(diǎn)在圓上;點(diǎn)在圓內(nèi)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,定義:dn=an+2+an﹣2an+1(n≥1),a1=1.
(1)若dn=an , a2=2,求an;
(2)若a2=﹣2,dn≥1,求證此數(shù)列滿足an≥﹣5(n∈N*);
(3)若|dn|=1,a2=1且數(shù)列{an}的周期為4,即an+4=an(n≥1),寫出所有符合條件的{dn}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了 名女性或 名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

(1)完成下列 列聯(lián)表:

喜歡旅游

不喜歡旅游

估計(jì)

女性

男性

合計(jì)


(2)能否在犯錯(cuò)誤概率不超過 的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.
附:

/td>

參考公式:
,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,以 為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.曲線 的極坐標(biāo)方程為 ,曲線 的參數(shù)方程為 為參數(shù)), .
(Ⅰ)求曲線 的直角坐標(biāo)方程,并判斷該曲線是什么曲線?
(Ⅱ)設(shè)曲線 與曲線 的交點(diǎn)為 , , ,當(dāng) 時(shí),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lx2y2m20

(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)由直線的斜率為,可得所求直線的斜率為,代入點(diǎn)斜式方程,可得答案;(2)直線與兩坐標(biāo)軸的交點(diǎn)分別為,則所圍成的三角形的面積為,根據(jù)直線與兩坐標(biāo)軸所圍成的三角形的面積為大于,構(gòu)造不等式,解得答案.

試題解析:(1)與直線l垂直的直線的斜率為-2,

因?yàn)辄c(diǎn)(2,3)在該直線上,所以所求直線方程為y3=-2(x2),

故所求的直線方程為2xy70

(2) 直線l與兩坐標(biāo)軸的交點(diǎn)分別為(-2m+2,0),(0,m-1),

則所圍成的三角形的面積為×|-2m+2|×|m-1|.

由題意可知×|-2m+2|×|m-1|>4,化簡得(m-1)2>4,

解得m>3或m<-1,

所以實(shí)數(shù)m的取值范圍是(-,-1)∪(3,+∞)

【方法點(diǎn)睛】本題主要考查直線的方程,兩條直線平行與斜率的關(guān)系,屬于簡單題. 對直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1 ;(2,這類問題盡管簡單卻容易出錯(cuò),特別是容易遺忘斜率不存在的情況,這一點(diǎn)一定不能掉以輕心.

型】解答
結(jié)束】
18

【題目】在平面直角坐標(biāo)系中,已知經(jīng)過原點(diǎn)O的直線與圓交于兩點(diǎn)。

(1)若直線與圓相切,切點(diǎn)為B,求直線的方程;

(2)若,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡”45歲為分界點(diǎn),由以上統(tǒng)計(jì)數(shù)據(jù)完成下面 列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在 的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在 的概率.
參考數(shù)據(jù)如下:
附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測值: (其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視連續(xù)劇《人民的名義》自2017年3月28日在湖南衛(wèi)視開播以來,引發(fā)各方關(guān)注,收視率、點(diǎn)擊率均占據(jù)各大排行榜首位.我們用簡單隨機(jī)抽樣的方法對這部電視劇的觀看情況進(jìn)行抽樣調(diào)查,共調(diào)查了600人,得到結(jié)果如下:其中圖1是非常喜歡《人民的名義》這部電視劇的觀眾年齡的頻率分布直方圖;表1是不同年齡段的觀眾選擇不同觀看方式的人數(shù).
表1

觀看方式
年齡(歲)

電視

網(wǎng)絡(luò)

150

250

120

80


求:(I)假設(shè)同一組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,求非常喜歡《人民的名義》這部電視劇的觀眾的平均年齡;
(II)根據(jù)表1,通過計(jì)算說明我們是否有99%的把握認(rèn)為觀看該劇的方式與年齡有關(guān)?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x3+3x2-9x
(I)求fx)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)fx)在區(qū)間[-4,c]上的最小值為-5,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域?yàn)?/span>,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個(gè)步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域?yàn)?/span>

為奇函數(shù)

2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:

任取,則

,

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點(diǎn)睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再判斷f(-x)f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個(gè)步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實(shí)數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實(shí)數(shù)的取值范圍;

(3)若,且對任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案