【題目】設(shè)橢圓E: (a>b>0),其長軸長是短軸長的 倍,過焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長為2 .
(1)求橢圓E的方程;
(2)設(shè)過右焦點(diǎn)F2且與x軸不垂直的直線l交橢圓E于P,Q兩點(diǎn),在線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.
【答案】
(1)解:不妨設(shè)焦點(diǎn)的坐標(biāo)是(c,0),
則過焦點(diǎn)且垂直于x軸的直線與橢圓的交點(diǎn)坐標(biāo)為(c,y0),
代入 可得,y0= ,
因?yàn)檫^焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長為2 ,
所以 ,
由題意得,a= b,代入上式解得:a=2 、b= ,
故所求橢圓方程為
(2)解:假設(shè)在線段OF2上存在點(diǎn)M(m,0)( )滿足條件,
∵直線與x軸不垂直,
∴設(shè)直線l的方程為 .
設(shè)P(x1,y1),Q(x2,y2),
由 ,可得 .
則 , .
∴ , ,其中x2﹣x1≠0,
∵以MP,MQ為鄰邊的平行四邊形是菱形,
∴ .
∴(x1+x2﹣2m)(x2﹣x1)+(y1+y2)(y2﹣y1)=0.
∴x1+x2﹣2m+k(y1+y2)=0.
∴ .
化簡得 = (k≠0),
則
在線段OF2上存在點(diǎn)M(m,0)符合條件,且
【解析】(1)由題意先求出直線與橢圓的交點(diǎn)坐標(biāo),再列出方程求出a、b的值,代入橢圓方程即可;(2)先假設(shè)存在點(diǎn)M(m,0)( )滿足條件,由點(diǎn)斜式設(shè)出直線l的方程,以及P、Q的坐標(biāo),將直線方程代入橢圓方程化簡后,利用韋達(dá)定理、菱形的等價(jià)條件、向量知識(shí),可求出m的范圍,再進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=1﹣x2 .
(1)求函數(shù)f(x)的解析式;
(2)作出函數(shù)f(x)的圖象.
(3)若函數(shù)f(x)在區(qū)間[a,a+1]上單調(diào),直接寫出實(shí)數(shù)a的取值范圍.(不必寫出演算過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則( )
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“出彩中國人”的一期比賽中,有6位歌手(1~6)登臺(tái)演出,由現(xiàn)場(chǎng)的百家大眾媒體投票選出最受歡迎的出彩之星,各家媒體獨(dú)立地在投票器上選出3位出彩候選人,其中媒體甲是1號(hào)歌手的歌迷,他必選1號(hào),另在2號(hào)至6號(hào)中隨機(jī)的選2名;媒體乙不欣賞2號(hào)歌手,他必不選2號(hào);媒體丙對(duì)6位歌手的演唱沒有偏愛,因此在1至6號(hào)歌手中隨機(jī)的選出3名.
(1)求媒體甲選中3號(hào)且媒體乙未選中3號(hào)歌手的概率;
(2)X表示3號(hào)歌手得到媒體甲、乙、丙的票數(shù)之和,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)當(dāng)a=﹣ ,c= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c= +1時(shí),若f(x)≥ 對(duì)x∈(c,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)f(x)的圖象在點(diǎn)P(x1 , f(x1))、Q(x2 , f(x2))兩處的切線分別為l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求實(shí)數(shù)c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 的展開式中,前三項(xiàng)系數(shù)成等差數(shù)列.
(1)求第三項(xiàng)的二項(xiàng)式系數(shù)及項(xiàng)的系數(shù);
(2)求含x項(xiàng)的系數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 的圖像與的圖像關(guān)于軸對(duì)稱,函數(shù),若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com