【題目】已知橢圓的一個(gè)焦點(diǎn)為,其左頂點(diǎn)在圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線交橢圓于兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線與軸的交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.
【答案】(Ⅰ); (Ⅱ)1.
【解析】試題分析:(1)由橢圓C的左頂點(diǎn)A在圓x2+y2=12上,求得a,由橢圓的一個(gè)焦點(diǎn)得c=3,由b2=a2-c2得b,即可.
(2)由題意,N1(x2,-y2),可得直線NM的方程,令y=0,可得點(diǎn)P的坐標(biāo)為(4,0). 利用△PMN的面積為S= |PF||y1-y2|,化簡了基本不等式的性質(zhì)即可得出.
試題解析:
(Ⅰ)∵橢圓的左頂點(diǎn)在圓上,∴
又∵橢圓的一個(gè)焦點(diǎn)為,∴ ∴
∴橢圓的方程為
(Ⅱ)設(shè),則直線與橢圓方程聯(lián)立
化簡并整理得,
∴,
由題設(shè)知 ∴直線的方程為
令得
∴點(diǎn)
(當(dāng)且僅當(dāng)即時(shí)等號成立)
∴的面積存在最大值,最大值為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,兩圓內(nèi)切于點(diǎn)T,大圓的弦AB切小圓于點(diǎn)C.TA,TB與小圓分別相交于點(diǎn)E,F.FE的延長線交兩圓的公切線TP于點(diǎn)P.
求證:(1) =;
(2)AC·PF=BC·PT.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(1)隨機(jī)選取1件產(chǎn)品,求能夠通過檢測的概率;
(2)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學(xué)期望..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求實(shí)數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A則實(shí)數(shù)b的取值范圍是( )
A.b≠0
B.b<0或b≥4
C.0≤b<4
D.b≤4或b≥4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋?,+∞),f(2)=1,f(xy)=f(x)+f(y)且當(dāng)x>1時(shí),f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若滿足f(1)=
(1)求實(shí)數(shù)a的值;
(2)證明:f(x)為奇函數(shù).
(3)判斷并證明函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的中學(xué)生是否愛好運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由K2= 得,K2= ≈7.8
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
B.有99%以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
D.有99%以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com