12.過(guò)點(diǎn)P(-2,0)的雙曲線C與橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的焦點(diǎn)相同,則雙曲線C的漸近線方程是( 。
A.$y=±\frac{{\sqrt{3}}}{3}x$B.$y=±\sqrt{3}x$C.$y=±\frac{1}{2}x$D.y=±2x

分析 根據(jù)題意,由橢圓的方程計(jì)算可得其焦點(diǎn)坐標(biāo),進(jìn)而由雙曲線的標(biāo)準(zhǔn)方程形式可以設(shè)c的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,分析可得$\left\{\begin{array}{l}{\frac{(-2)^{2}}{{a}^{2}}=1}\\{{a}^{2}+^{2}=16}\end{array}\right.$,解可得a2、b2的值;即可得c的標(biāo)準(zhǔn)方程,由雙曲線的幾何性質(zhì)可得其漸近線方程,即可得答案.

解答 解:根據(jù)題意,橢圓的方程為$\frac{x^2}{25}+\frac{y^2}{9}=1$,
其中c=$\sqrt{25-9}$=4,
則其焦點(diǎn)坐標(biāo)為(±4,0),
雙曲線C過(guò)點(diǎn)P(-2,0),
其焦點(diǎn)焦點(diǎn)坐標(biāo)為(±4,0),可以設(shè)其標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,
則有$\left\{\begin{array}{l}{\frac{(-2)^{2}}{{a}^{2}}=1}\\{{a}^{2}+^{2}=16}\end{array}\right.$,解可得a2=4,b2=12;
則C的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1,其漸近線方程為:y=±$\sqrt{3}$x;
故選:B.

點(diǎn)評(píng) 本題考查橢圓,雙曲線的幾何性質(zhì),關(guān)鍵是求出橢圓的焦點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$f(x)={e^x}-\frac{x}{4}$,其中e為自然對(duì)數(shù)的底數(shù)
(1)設(shè)g(x)=xf'(x)(其中f'(x)為f(x)的導(dǎo)函數(shù)),判斷g(x)在(0,+∞)上的單調(diào)性
(2)若F(x)=lnx-af(x)+1無(wú)零點(diǎn),試確定a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在長(zhǎng)為5的線段AB上任取一點(diǎn)P,以AP為邊長(zhǎng)作等邊三角形,則此三角形的面積介于$\sqrt{3}$和4$\sqrt{3}$的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若數(shù)列{an}滿足an+1=1-$\frac{1}{{a}_{n}}$,且a1=2,則a2016=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓的參數(shù)方程為$\left\{\begin{array}{l}{x=2cost+1}\\{y=4sint}\end{array}\right.$,(t為參數(shù)),點(diǎn)M在橢圓上,對(duì)應(yīng)的參數(shù)t=$\frac{π}{3}$,點(diǎn)O為原點(diǎn),則OM的傾斜角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-4≤0\\ x-y+2≥0\\ x≥2\end{array}\right.$,則z=3x-y的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知復(fù)數(shù)z=$\frac{1-2i}{2+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的虛部為( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.甲、乙兩人約定晚上6點(diǎn)到7點(diǎn)之間在某地見面,并約定先到者要等候另一人10分鐘,過(guò)時(shí)即可離開.則甲、乙能見面的概率為$\frac{11}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2+lnx-mx(m>0)
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:曲線y=f(x)不存在經(jīng)過(guò)原點(diǎn)的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案