已知雙曲線x2-
y2
3
=1的左頂點為A1,右焦點為F2,P為雙曲線右支上一點,則
PA1
PF2
最小值為( 。
A、-2
B、-
81
16
C、1
D、0
考點:雙曲線的簡單性質
專題:計算題,平面向量及應用,圓錐曲線的定義、性質與方程
分析:根據題意,設P(x,y)(x≥1),根據雙曲線的方程,易得A1、F2的坐標,將其代入
PA1
PF2
,可得關于x、y的關系式,結合雙曲線的方程,可得
PA1
PF2
═4x2-x-5配方,再由x的范圍,可得答案.
解答: 解:根據題意,設P(x,y)(x≥1),
易得A1(-1,0),F(xiàn)2(2,0),
PA1
PF2
=(-1-x,y)•(2-x,y)=x2-x-2+y2,
又x2-
y2
3
=1,故y2=3(x2-1),
于是
PA1
PF2
=4x2-x-5=4(x-
1
8
2-5-
1
16
,
當x=1時,取到最小值-2;
故選A.
點評:本題考查雙曲線方程的應用,涉及最值問題;解題的思路是先設出變量,表示出要求的表達式,結合圓錐曲線的方程,將其轉化為只含一個變量的關系式,進而由不等式的性質或函數(shù)的最值進行計算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
4
x4
-ax2+2x(a∈R).
(Ⅰ)若a=
3
2
,求函數(shù)f(x)極值;
(Ⅱ)設F(x)=f′(x)+(2a-1)x2+a2x-2,若函數(shù)F(x)在[0,1]上單調遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在(0,+∞)上的增函數(shù),且f(x)=f(
x
y
)+f(y),若f(3)=1,f(x)-f(
1
x-5
)≥2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求導:
①y=log3x2
②y=23x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是⊙C:(x-1)2+(y-
3
2=1上的一個動點,A(
3
,1),則
OP
OA
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的三角方程sin(x+
π
4
)-sin2x=a有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知,正方形ABCD的邊長為1,AP⊥平面ABCD,且AP=
2
,則PC與平面PAB所成的角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=2,an+1=an+
1
an
(n=1,2,…).
(1)求a2,a3,a4的值;
(2)比較an
2n+1
的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在[a,b]上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:
①f(x)的值域為M,且M⊆[a,b];
②對任意不相等的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.
那么,關于x的方程f(x)=x在區(qū)間[a,b]上根的情況是( 。
A、沒有實數(shù)根
B、有且僅有一個實數(shù)根
C、恰有兩個不等的實數(shù)根
D、實數(shù)根的個數(shù)無法確定

查看答案和解析>>

同步練習冊答案