已知橢圓E的中心在坐標原點,焦點在x軸上,離心率為,且橢圓E上一點到兩個焦點距離之和為4;l1,l2是過點P(0,2)且互相垂直的兩條直線,l1交E于A,B兩點,l2交E交C,D兩點,AB,CD的中點分別為M,N.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求l1的斜率k的取值范圍;
(Ⅲ)求的取值范圍.
【答案】分析:(1)設(shè)橢圓的標準方程,根據(jù)離心率求得a和c關(guān)系,進而根據(jù)a求得b,則橢圓的方程可得.
(2)由題意知,直線l1的斜率存在且不為零設(shè)直線l1和l2的方程,分別于橢圓方程聯(lián)立消去y,根據(jù)判別式求得k的范圍,最后綜合可得答案.
(3)設(shè)A(x1,y1),B(x2,y2),M(x,y),根據(jù)韋達定理求得x和y的表達式,進而表示M和N的坐標,最后表示出根據(jù)k的范圍確定答案.
解答:解:(Ⅰ)設(shè)橢圓方程為,

∴橢圓方程為;
(2)由題意知,直線l1的斜率存在且不為零
,∴
消去y并化簡整理,
得(3+4k2)x2+16kx+4=0
根據(jù)題意,△=(16k)2-16(3+4k2)>0,解得
同理得,
;
(Ⅲ)設(shè)A(x1,y1),B(x2,y2),M(x,y
那么,∴,∴
同理得,即

,∴

的取值范圍是
點評:本題主要考查了直線與圓錐曲線的綜合問題.此類題綜合性強,要求學生要有較高地轉(zhuǎn)化數(shù)學思想的運用能力,能將已知條件轉(zhuǎn)化到基本知識的運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在坐標原點,焦點在坐標軸上,且經(jīng)過A(-2,0),B(2,0),C(1,
32
)
三點
(1)求橢圓方程
(2)若此橢圓的左、右焦點F1、F2,過F1作直線L交橢圓于M、N兩點,使之構(gòu)成△MNF2證明:△MNF2的周長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在坐標原點,焦點在坐標軸上,且經(jīng)過A(-2,0)、B(2,0)、C(1,
32
)
三點.
(1)求橢圓E的方程:
(2)若點D為橢圓E上不同于A、B的任意一點,F(xiàn)(-1,0),H(1,0),當△DFH內(nèi)切圓的面積最大時.求內(nèi)切圓圓心的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•閔行區(qū)二模)已知橢圓E的中心在坐標原點O,焦點在坐標軸上,且經(jīng)過M(2,1),N(2
2
,0)
兩點.
(1)求橢圓E的方程;
(2)若平行于OM的直線l在y軸上的截距為b(b<0),直線l交橢圓E于兩個不同點A、B,直線MA與MB的斜率分別為k1、k2,求證:k1+k2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在坐標原點,焦點在坐標軸上,且經(jīng)過A(-2,0)、B(2,0)、C(1,
32
)
三點.
(1)求橢圓E的方程;
(2)若點D為橢圓E上不同于A、B的任意一點,F(xiàn)(-1,0),H(1,0),當△DFH內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標;
(3)若直線l:y=k(x-1)(k≠0)與橢圓E交于M、N兩點,證明直線AM與直線BN的交點在定直線上并求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在坐標原點O,焦點在坐標軸上,且經(jīng)過M(2,1)、N(2
2
,0)
兩點,P是E上的動點.
(1)求|OP|的最大值;
(2)若平行于OM的直線l在y軸上的截距為b(b<0),直線l交橢圓E于兩個不同點A、B,求證:直線MA與直線MB的傾斜角互補.

查看答案和解析>>

同步練習冊答案