精英家教網 > 高中數學 > 題目詳情
11.已知函數y=ax3+3x2+3x+3在x=1處取得極值,則a=-3.

分析 求出函數的導數,計算f′(1)=0,求出a的值檢驗即可.

解答 解:∵y'=3ax2+6x+3,
而f'(1)=3a+9=0,
解得:a=-3,
經檢驗a=-3符合題意,
故答案為:-3,

點評 本題考查了函數的單調性、極值問題,考查導數的應用,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.給出如圖所示的一組等式,則觀察圖中所展示的規(guī)律,可推出S20的值為( 。
A.4410B.4010C.4020D.4400

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知函數f(x)=ax-2$\sqrt{4-{a}^{x}}$-1(a>1).
(1)若a=2,求函數f(x)的定義域、值域;
(2)若函數f(x)滿足:對于任意x∈(-∞,1],都有f(x)+1≤0.試求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=ln(x+1),g(x)=kx(k∈R).
(1)證明:當x>0時,f(x)<x;
(2)證明:當k<1時,存在x0>0,使得對任意的x∈(0,x0),恒有f(x)>g(x).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知命題p,q,則“p或q是真命題”是“¬p為假命題”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知點P為圓x2+y2=25上任意一點,過P作x軸的垂線,垂足為H,且滿足$\overrightarrow{MH}$=$\frac{3}{5}\overrightarrow{PH}$,若M的軌跡為曲線E.
(1)求h(x)=f(x)-g(x)的方程;
(2)設過曲線E左焦點的兩條弦為MN、PQ,弦MN,PQ所在直線的斜率分別為k1、k2,當k1k2=1時,判斷$\frac{1}{|MN|}$+$\frac{1}{|PQ|}$是否為定值,若是,求出該定值,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知集合A={0,1,2},B={x|x2-x≤0},則A∩B={0,1}.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.設函數  f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$   則f(f($\frac{2}{3}$))=( 。
A.3B.2C.5D.-3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知a,b,c分別為△ABC三個內角A,B,C的對邊,acosC+$\sqrt{3}$asinC=b+c.
(1)求A;
(2)若a=2,△ABC的面積為$\sqrt{3}$,判斷此三角形的形狀.

查看答案和解析>>

同步練習冊答案