16.圓x2+y2=5與圓(x-1)2+(y-1)2=3的公共弦的弦長(zhǎng)等于( 。
A.2$\sqrt{2}$B.2$\sqrt{5}$C.$\frac{3\sqrt{7}}{2}$D.2$\sqrt{3}$

分析 兩圓方程相減求出公共弦所在直線的解析式,求出第一個(gè)圓心到直線的距離,再由第一個(gè)圓的半徑,利用勾股定理及垂徑定理即可求出公共弦長(zhǎng).

解答 解:圓x2+y2=5與圓(x-1)2+(y-1)2=3的方程相減得:x+y-2=0,
由圓x2+y2=5的圓心(0,0),半徑r為$\sqrt{5}$,
且圓心(0,0)到直線x+y-2=0的距離d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
則公共弦長(zhǎng)為2$\sqrt{5-2}$=2$\sqrt{3}$.
故選:D.

點(diǎn)評(píng) 此題考查了直線與圓相交的性質(zhì),求出公共弦所在的直線方程是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=k-$\frac{1}{x}$(其中k為常數(shù));
(1)求:函數(shù)的定義域;
(2)證明:函數(shù)在區(qū)間(0,+∞)上為增函數(shù);
(3)若函數(shù)為奇函數(shù),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.直角坐標(biāo)方程y2=12x的極坐標(biāo)方程為ρsin2θ=12cosθ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=$\frac{{{{(x-1)}^0}}}{{\sqrt{2-x}}}$的定義域是{x|x<2且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.不等式(a-2)x2-2(a-2)x-4<0對(duì)x∈R恒成立,則實(shí)數(shù)a的取值范圍為-2<a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對(duì)于任意的x1,x2∈D,當(dāng)x1+x2=2A時(shí),恒有F(x1)+f(x2)=2b,則稱(a,b)為函數(shù)y=f(x)圖象的對(duì)稱中心,研究函數(shù)f(x)=x3+sinx+1的某一個(gè)對(duì)稱中心,并利用對(duì)稱中心的上述定義,可得到f(-2016)+f(-2015)+f(-2015)+f(-2014)+…+f(2014)+f(2015)+f(2016)=( 。
A.0B.2016C.4032D.4033

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知定義在R的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù),其中a,b為實(shí)數(shù)
(1)求a,b的值
(2)用定義證明f(x)在R上是減函數(shù)
(3)若對(duì)于任意的t∈[-3,3],不等式f(t2-2t)+f(-2t2+k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,D為BC邊上的中點(diǎn),P0是邊AB上的一個(gè)定點(diǎn),P0B=$\frac{1}{4}$AB,且對(duì)于AB上任一點(diǎn)P,恒有$\overrightarrow{PB}$•$\overrightarrow{PC}$≥$\overrightarrow{{P}_{0}B}$•$\overrightarrow{{P}_{0}C}$,則下列結(jié)論中正確的是①②⑤(填上所有正確命題的序號(hào)).
①當(dāng)P與A,B不重合時(shí),$\overrightarrow{PB}$+$\overrightarrow{PC}$與$\overrightarrow{PD}$共線;
②$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overline{P{D}_{2}}$-$\overrightarrow{D{B}_{2}}$;
③存在點(diǎn)P,使|$\overrightarrow{PD}$|<|$\overrightarrow{{P}_{0}D}$|;
④$\overrightarrow{{P}_{0}C}$•$\overrightarrow{AB}$=0;
⑤AC=BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在正三棱錐S-ABC中,AB=BC=AC=4,D是AB中點(diǎn),且SD與BC所成角的余弦值為$\frac{{\sqrt{3}}}{6}$,則三棱錐S-ABC外接圓的表面積為24π.

查看答案和解析>>

同步練習(xí)冊(cè)答案