設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為
 
分析:由雙曲線的漸近線方程是2x±3y=0可知焦點(diǎn)是在x軸時(shí)
b
a
=
2
3
,焦點(diǎn)在y軸時(shí)
b
a
=
3
2
,由此可以求出該雙曲線的離心率
解答:解:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點(diǎn)是在x軸時(shí),
b
a
=
2
3
,
設(shè)a=3k,b=2k,則 c=
13
k
,∴e=
13
3

焦點(diǎn)在y軸時(shí)
b
a
=
3
2
,
設(shè)a=2k,b=3k,則 c=
13
k
,∴e=
13
2


故答案為:
13
3
13
2
點(diǎn)評(píng):本題考查雙曲線的漸近線和離心率,解題的關(guān)鍵是由漸近線方程導(dǎo)出a,b,c的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)P為雙曲線與圓x2+y2=a2+b2的一個(gè)交點(diǎn),且滿足|PF1|=2|PF2|,求此雙曲線的離心率;
(Ⅱ)設(shè)雙曲線的漸近線方程為y=±x,F(xiàn)2到漸近線的距離是
2
,過(guò)F2的直線交雙曲線于A,B兩點(diǎn),且以AB為直徑的圓與y軸相切,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三調(diào)研理科數(shù)學(xué)試卷(3) 題型:選擇題

設(shè)雙曲線的漸近線方程為,則的值為( 。

A.4              B.3              C.2              D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆度黑龍江龍東地區(qū)第一學(xué)期高二期末理科數(shù)學(xué)試卷 題型:選擇題

設(shè)雙曲線的漸近線方程為,則的值為

    A.4           B.3        C.2        D.1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(湖南卷)解析版 題型:選擇題s

 設(shè)雙曲線的漸近線方程為,則的值為(     )

A.4      B.3       C.2       D.1

 

查看答案和解析>>

同步練習(xí)冊(cè)答案