【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)上存在兩個(gè)極值點(diǎn),,且,證明:.

【答案】(1);(2)見解析.

【解析】分析:(1)由題意得出在定義域上恒成立,即

設(shè),則,由此利用導(dǎo)數(shù)求得函數(shù)單調(diào)性與最值,即可求解;

(2)由(1)知,由函數(shù)上存在兩個(gè)極值點(diǎn),,推導(dǎo)出∴ ,設(shè),則,要證,只需證,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可作出求解.

詳解:(1)上是減函數(shù),

在定義域上恒成立,

,

設(shè),則,

,得,由,得,

∴函數(shù)上遞增,在上遞減,

,.

故實(shí)數(shù)的取值范圍是.

證明:(2)由(1)知

∵函數(shù)上存在兩個(gè)極值點(diǎn),,且,

,

設(shè),則

要證,

只需證,只需證,只需證,

構(gòu)造函數(shù),則,

上遞增,

,即,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 : 過點(diǎn)的直線交拋物線兩點(diǎn),設(shè)

(1)若點(diǎn) 關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線經(jīng)過拋物線 的焦點(diǎn);

(2)若求當(dāng)最大時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過原點(diǎn)O的直線與函數(shù)的圖象交于A,B兩點(diǎn),分別過ABy軸的平行線與函數(shù)圖象交于C,D兩點(diǎn),若軸,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺(tái)ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2. (Ⅰ)若M為CD中點(diǎn),求證:AM⊥平面AA1B1B;
(Ⅱ)求直線DD1與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表中提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的四組對(duì)應(yīng)數(shù)據(jù).

6

8

10

12

2.5

3

4

4.5

(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為45噸標(biāo)準(zhǔn)煤,試根據(jù)(1)中的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了16月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(個(gè))

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x;

(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.

附:(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣aex﹣e2x(a∈R,e是自然對(duì)數(shù)的底數(shù)). (Ⅰ)若f(x)≤0對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若方程x﹣aex=0有兩個(gè)不同的實(shí)數(shù)解x1 , x2 , 求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓軸的左右交點(diǎn)分別為,與軸正半軸的交點(diǎn)為.

(1)若直線過點(diǎn)并且與圓相切,求直線的方程;

(2)若點(diǎn)是圓上第一象限內(nèi)的點(diǎn),直線分別與軸交于點(diǎn),點(diǎn)是線段的中點(diǎn),直線,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(1,2),過點(diǎn)P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點(diǎn),則△ABC是(
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案