(2013•成都二模)已知數(shù)列{an}滿足 an+2-an+1=an+1-an,n∈N*,且a5=
π
2
若函數(shù)f(x)=sin2x+2cos2
x
2
,記yn=f(an),則數(shù)列{yn}的前9項和為(  )
分析:確定數(shù)列{an}是等差數(shù)列,利用等差數(shù)列的性質(zhì),可得f(a1)+f(a9)=f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2,由此可得結(jié)論.
解答:解:∵數(shù)列{an}滿足an+2-an+1=an+1-an,n∈N*,
∴數(shù)列{an}是等差數(shù)列,
∵a5=
π
2
,∴a1+a9=a2+a8=a3+a7=a4+a6=2a5
∵f(x)=sin2x+2cos2
x
2
,
∴f(x)=sin2x+cosx+1,
∴f(a1)+f(a9)=sin2a1+cosa1+1+sin2a9+cosa9+1=2
同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2
∵f(a5)=1
∴數(shù)列{yn}的前9項和為9
故選C.
點評:本題考查等差數(shù)列的性質(zhì),考查數(shù)列與函數(shù)的聯(lián)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)函數(shù)f(x)=log2x-
1
x
的零點所在的區(qū)間為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則該幾何體的體積為( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)已知全集U={1,2,3,4,5,6},M={1,3,5},則?UM=( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)已知直線l和平面α,若l∥α,P∈α,則過點P且平行于l的直線( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都二模)在平面直角坐標系xOy中,已知點A(l,2),若P是拋物線 y2=2x上一動點,則P到y(tǒng)軸的距離與P到點A的距離之和的最小值為( �。�

查看答案和解析>>

同步練習(xí)冊答案