【題目】已知直線:y=k (x+2)與圓O:相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),ABO的面積為S.
(1)試將S表示成的函數(shù)S(k),并求出它的定義域;
(2)求S的最大值,并求取得最大值時(shí)k的值.
【答案】(1)
(2) 即, .
【解析】(1)先求出三角形的高,即原點(diǎn)O到直線的距離,然后再利用圓的弦長(zhǎng)公式求出三角形的底的長(zhǎng)度,進(jìn)而確定
(2)求最值要換元.令,這樣轉(zhuǎn)化成二次函數(shù)最值解決即可.
解:如圖,(1)直線方程為: ,且.——————2分
原點(diǎn)O到的距離為——————3分
弦長(zhǎng)——————4分
——————————8分
(2) 令則——————10分
.————12分
當(dāng)t=時(shí), 時(shí),————————14分
另解:△ABO面積S=
即,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品一年內(nèi)出廠價(jià)格在6元的基礎(chǔ)上按月份隨正弦曲線波動(dòng),已知3月份達(dá)到最高價(jià)格8元,7月份價(jià)格最低為4元,該商品在商店內(nèi)的銷售價(jià)格在8元基礎(chǔ)上按月份隨正弦曲線波動(dòng),5月份銷售價(jià)格最高為10元,9月份銷售價(jià)最低為6元,假設(shè)商店每月購(gòu)進(jìn)這種商品m件,且當(dāng)月銷完,你估計(jì)哪個(gè)月份盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)是這樣定義的:對(duì)于任意整數(shù)m,當(dāng)實(shí)數(shù)x滿足不等式|x﹣m|< 時(shí),有f(x)=m.
(1)求函數(shù)f(x)的定義域D,并畫出它在x∈D∩[0,3]上的圖象;
(2)若數(shù)列an=2+10( )n , 記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列{an},若an+2﹣an=d(d是與n無(wú)關(guān)的常數(shù),n∈N*),則稱數(shù)列{an}叫做“弱等差數(shù)列”,已知數(shù)列{an}滿足:a1=t,a2=s且an+an+1=an+b對(duì)于n∈N*恒成立,(其中t,s,a,b都是常數(shù)).
(1)求證:數(shù)列{an}是“弱等差數(shù)列”,并求出數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)t=1,s=3時(shí),若數(shù)列{an}是等差數(shù)列,求出a、b的值,并求出{an}的前n項(xiàng)和Sn;
(3)若s>t,且數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為對(duì)數(shù)函數(shù),并且它的圖象經(jīng)過(guò)點(diǎn),函數(shù)=在區(qū)間上的最小值為,其中.
(1)求函數(shù)的解析式;
(2)求函數(shù)的最小值的表達(dá)式;
(3)是否存在實(shí)數(shù)同時(shí)滿足以下條件:①;②當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>.若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的兩個(gè)焦點(diǎn)分別為, ,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為,過(guò)點(diǎn)的直線與橢圓相交于異于的不同兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離和它到直線的距離的比值為常數(shù),記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與曲線相交于不同的兩點(diǎn), ,直線與曲線相交于不同的兩點(diǎn) ,且,求以, , , 為頂點(diǎn)的凸四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c= ,f(C)=0,若 =(1,sinA)與 =(2,sinB)共線,求a,b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com