分析 求出指數(shù)函數(shù)的解析式,利用指數(shù)的基本運(yùn)算性質(zhì)判斷①、②,根據(jù)函數(shù)的單調(diào)性判斷③,根據(jù)指數(shù)的運(yùn)算法則和基本不等式判斷④.
解答 解:∵點(diǎn)(2,9)在函數(shù)f(x)=ax(a>0且a≠1)圖象上,
∴a2=9,解得:a=3,
∴f(x)=3x,
∴①f(x1+x2)=${3}^{{x}_{1}{+x}_{2}}$=${3}^{{x}_{1}}$•${3}^{{x}_{2}}$=f(x1)•f(x2),故①正確;
②f(x1•x2)=${3}^{{x}_{1}{•x}_{2}}$≠f(x1)+f(x2),故②錯(cuò)誤;
③a=3>1,f(x)在R遞增,故$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,故③錯(cuò)誤;
④$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{{3}^{{x}_{1}}{+3}^{{x}_{2}}}{2}$≥$\frac{2\sqrt{{3}^{{x}_{1}}{•3}^{{x}_{2}}}}{2}$=${3}^{\frac{{x}_{1}{+x}_{2}}{2}}$=f($\frac{{x}_{1}+{x}_{2}}{2}$)
故④正確;
故答案為:①④.
點(diǎn)評(píng) 本題主要考查了指數(shù)的基本運(yùn)算性質(zhì),指數(shù)函數(shù)單調(diào)性的應(yīng)用,基本不等式的應(yīng)用,屬于知識(shí)的簡(jiǎn)單綜合應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({-1,\frac{1}{2}})$ | B. | $({-∞,\frac{1}{2}})$ | C. | $({\frac{1}{2},2})$ | D. | $[{-1,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com