兩條互相垂直的直線2x+y+2=0與ax+4y-2=0的交點(diǎn)坐標(biāo)為
(-1,0)
(-1,0)
分析:根據(jù)兩直線垂直,斜率之積等于-1,求出a=-2,把兩直線的方程聯(lián)立方程組求得交點(diǎn)的坐標(biāo).
解答:解:由題意可得-2×(-
a
4
)=-1,∴a=-2.
兩直線即2x+y+2=0與-8x+4y-2=0.
2x+y+2=0
-8x+4y-2=0

 可得交點(diǎn)的坐標(biāo)為(-1,0),
故答案為:(-1,0).
點(diǎn)評(píng):本題考查兩直線垂直的性質(zhì),求兩直線的交點(diǎn)坐標(biāo),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-
3
)
,(0,
3
)
的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)(0,
3
)
作兩條互相垂直的直線l1、l2分別與曲線C交于A、B和C、D,以線段AB為直徑的圓過能否過坐標(biāo)原點(diǎn),若能,求直線AB的斜率,若不能說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程(x+y-1)
x-y-3
=0
表示的曲線是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湘潭三模)拋物線y=g(x)過點(diǎn)O(0,0)、A(m,0)與點(diǎn)P(m+1,m+1),其中m>n>0,b<a,設(shè)函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值.
(1)用m,x表示y=g(x)并比較a,b,m,n的大。ㄒ蟀磸男〉酱笈帕校
(2)若m+n≤2
2
,且過原點(diǎn)存在兩條互相垂直的直線與曲線y=f(x)均相切,求y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0,y>0)
的離心率為
3
2
,A、B為它的左、右焦點(diǎn),過一定點(diǎn)N(1,0)任作兩條互相垂直的直線與C分別交于點(diǎn)P和Q,且|
PA
+
PB
|的最小值為2.
(1)求橢圓C的方程;
(2)是否存在直線NP、NQ,使得向量
PA
+
PB
QA
+
QB
互相垂直?若存在,求出點(diǎn)P、Q的橫坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-3,2)、B(1,-4),過A、B作兩條互相垂直的直線l1和l2,則l1和l2的交點(diǎn)M的軌跡方程為
 
 (化為標(biāo)準(zhǔn)形式)

查看答案和解析>>

同步練習(xí)冊(cè)答案