動點Px軸與直線ly=3之間的區(qū)域(含邊界)上運動,且點P到點F(0,1)和直線l的距離之和為4.

(Ⅰ)求點P的軌跡C的方程;

(Ⅱ)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成的區(qū)域的面積.

解:(Ⅰ)設(shè)Px,y),根據(jù)題意,得.……………3分

化簡,得.……………………………………4分

(Ⅱ)設(shè)過Q的直線方程為,代入拋物線方程,整理,得

∴△=.解得.………………………6分

所求切線方程為(也可以用導(dǎo)數(shù)求得切線方程),

此時切點的坐標(biāo)為(2,1),(-2,1),且切點在曲線C上. ……………8分

由對稱性知所求的區(qū)域的面積為

.………………………10分

說明:拋物線在附加題中的要求提高了,定積分要求不高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.
(1)求點P的軌跡C的方程;
(2)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.
求點P的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分10分)

動點Px軸與直線ly=3之間的區(qū)域(含邊界)上運動,且點P到點F(0,1)和直線l的距離之和為4.

(Ⅰ)求點P的軌跡C的方程;

(Ⅱ)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成的區(qū)域的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點Px軸與直線ly=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.

(1)求點P的軌跡C的方程;

(2)過點作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南通市高三第一次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且到點F(0,1)和直線l的距離之和為4.
(1)求點P的軌跡C的方程;
(2)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊答案