據(jù)行業(yè)協(xié)會預(yù)測:某公司以每噸10萬元的價格銷售某種化工產(chǎn)品,可售出該產(chǎn)品1000 噸,若將該產(chǎn)品每噸的價格上漲%,則銷售量將減少%,且該化工產(chǎn)品每噸的價格上漲幅度不超過%,其中為正常數(shù) 
(1)當時,該產(chǎn)品每噸的價格上漲百分之幾,可使銷售的總金額最大?
(2)如果漲價能使銷售總金額比原銷售總金額多,求的取值范圍.
(1)當x=50時,萬元. 
(2)

試題分析:解:(1)設(shè)該產(chǎn)品每噸的價格上漲x%時,銷售總金額為y萬元  1分
由題意得:  3分

時,
當x=50時,萬元.  7分
即該產(chǎn)品每噸的價格上漲50%時,銷售總金額最大  8分
(2)由(1)得:     
如果漲價能使銷售總金額比原銷售總金額多,則有
時,  10分
     
時恒成立  12分
,即
解得:,m的取值范圍是  16分
點評:主要是考查了二次函數(shù)模型以及二次函數(shù)性質(zhì)的運用,以及不等式的求解,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

作為紹興市2013年5.1勞動節(jié)系列活動之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個矩形設(shè)計為花圃(如圖),種植有不同品種的觀賞花卉,周圍則均是寬為1米的賞花小徑,設(shè)花圃占地面積為平方米,矩形一邊的長為米(如圖所示)

(1)試將表示為的函數(shù);
(2)問應(yīng)該如何設(shè)計矩形地塊的邊長,使花圃占地面積取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于在區(qū)間 [ m,n ] 上有意義的兩個函數(shù),如果對任意,均有,則稱在 [ m,n ] 上是友好的,否則稱在 [ m,n ]是不友好的.現(xiàn)有兩個函數(shù)(a > 0且),給定區(qū)間
(1)若在給定區(qū)間上都有意義,求a的取值范圍;
(2)討論在給定區(qū)間上是否友好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于函數(shù),有下列結(jié)論:①函數(shù)的定義域是(0,+∞);②函數(shù)是奇函數(shù);③函數(shù)的最小值為-;④當時,函數(shù)是增函數(shù);當時,函數(shù)是減函數(shù).
其中正確結(jié)論的序號是         .(寫出所有你認為正確的結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在上的偶函數(shù)滿足,且在上是增函數(shù),下面關(guān)于的判斷:
關(guān)于點P()對稱         ②的圖像關(guān)于直線對稱;
在[0,1]上是增函數(shù);       ④.
其中正確的判斷是_________(把你認為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則P,Q的大小關(guān)系為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知不等式
(1)若對所有的實數(shù)不等式恒成立,求的取值范圍;
(2)設(shè)不等式對于滿足的一切的值都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若對于任意實數(shù)x不等式恒成立,則實數(shù)的取值范圍是:_        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)滿足,且在定義域內(nèi)恒成立,求實數(shù)的取值范圍;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求實數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案