【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時,周日測試

方式二:周六一天培訓(xùn)4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.

【答案】(1)方式一(2

【解析】

(1)用總的受訓(xùn)時間除以,得到平均受訓(xùn)時間.由此判斷出方式一效率更高.(2)利用分層抽樣的知識,計(jì)算得來自甲組人,乙組.再利用列舉法求得“從這人中隨機(jī)抽取人,求這人中至少有人來自甲組的概率”.

解:(1)設(shè)甲乙兩組員工受訓(xùn)的平均時間分別為、,則

(小時)

(小時)

據(jù)此可估計(jì)用方式一與方式二培訓(xùn),員工受訓(xùn)的平均時間分別為10小時和10.9小時,因,據(jù)此可判斷培訓(xùn)方式一比方式二效率更高;

(2)從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,

則這6人中來自甲組的人數(shù)為:

來自乙組的人數(shù)為:,

記來自甲組的2人為:;來自乙組的4人為:,則從這6人中隨機(jī)抽取

2人的不同方法數(shù)有:,,,,共15種,

其中至少有1人來自甲組的有:

共9種,故所求的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式組表示的平面區(qū)域?yàn)?/span>D,的最大值等于8.

1)求的值;

2)求的取值范圍;

3)若直線過點(diǎn)P(-3,3),求區(qū)域D在直線上的投影的長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的資料顯示,該基地周光照量(小時)都在30小時以上,其中不足50小時的有5周,不低于50小時且不超過70小時的有35周,超過70小時的有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(千克)與使用某種液體肥料的質(zhì)量(千克)之間的關(guān)系如圖所示.

(1)依據(jù)上圖,是否可用線性回歸模型擬合的關(guān)系?請計(jì)算相關(guān)系數(shù)并加以說明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運(yùn)行臺數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時)

光照控制儀運(yùn)行臺數(shù)

3

2

1

若某臺光照控制儀運(yùn)行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運(yùn)行,則該臺光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?

附:相關(guān)系數(shù)公式

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個袋子里有形狀一樣僅顏色不同的6個小球,其中白球2個,黑球4現(xiàn)從中隨機(jī)取球,每次只取一球.

若每次取球后都放回袋中,求事件“連續(xù)取球四次,至少取得兩次白球”的概率;

若每次取球后都不放回袋中,且規(guī)定取完所有白球或取球次數(shù)達(dá)到五次就終止游戲,記游戲結(jié)束時一共取球X次,求隨機(jī)變量X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:

年齡

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

頻數(shù)

5

10

15

10

5

5

支持“生

育二胎”

4

5

12

8

2

1

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99的把握認(rèn)為以45歲為分界點(diǎn)對“生育二胎放開”政策的支持度有差異:

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

支持

a=

c=

不支持

b=

d=

合計(jì)

(2)若對年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?

參考數(shù)據(jù):P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)輸公司年有萬輛公交車,計(jì)劃年投入輛新型號公交車,以后每年投入的新型號公交車數(shù)量均比上年增加.

1年應(yīng)投入多少輛新型號公交車?

2)從年到年間共投入多少輛新型號公交車?

3)從哪一年開始,該公司新型號公交車總量超過該公司公交車總量的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教材中指出:當(dāng)很小,不太大時,可以用表示的近似值,即 1),我們把近似值與實(shí)際值之差除以實(shí)際值的商的絕對值稱為相對近似誤差,一般用字母表示,即相對近似誤差

1)利用(1)求出的近似值,并指出其相對近似誤差(相對近似誤差保留兩位有效數(shù)字)

2)若利用(1)式計(jì)算的近似值產(chǎn)生的相對近似誤差不超過,求正實(shí)數(shù)的取值范圍;

3)若利用(1)式計(jì)算的近似值產(chǎn)生的相對近似誤差不超過,求正整數(shù)的最大值。(參考對數(shù)數(shù)值:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且右焦點(diǎn)為

1)求橢圓的方程;

2)過點(diǎn)的直線與橢圓交于兩點(diǎn),交軸于點(diǎn).若,求證:為定值;

3)在(2)的條件下,若點(diǎn)不在橢圓的內(nèi)部,點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),試求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線軸有兩個焦點(diǎn),且經(jīng)過點(diǎn)

(1)的值;

(2)設(shè)為曲線上的動點(diǎn),求的最小值;

(3)且斜率為的直線羽毛球形線相交于點(diǎn)三點(diǎn),問是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案