如圖,邊長為2的正方形ABCD外有一點P,且PA=PB=PC=PD=2中,E是PC的中點.
(1)求證:PA平面EBD;
(2)求異面直線PA與BE所成的角的余弦值.
(1)取BD中點O,連接OE,
∵四邊形ABCD是正方形,
∴AO=OC.
又PE=EC,
∴OEPA.
又AP?平面EBD,OE?平面EBD.
∴PA平面EBD;
(2)由(1)可知:PAEO,
∴∠OEB是異面直線PA與BE所成的角.
∵正方形ABCD的邊長為2,且PA=PB=PC=PD=2,E為PC的中點.
∴OB=
1
2
BD=
1
2
×2
2
=
2
,EB=
3
,
在Rt△OBE中,OE=
EB2-OB2
=1.
cos∠OEB=
OE
EB
=
3
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在直棱柱中,,,AA1=2,E、F分別是AC、AB的中點,過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為,則截面的面積為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,設AA1=2.M,N分別是C1D1,CC1的中點.
(1)求異面直線A1N與MC所成角的余弦值;
(2)設P為線段AD上任意一點,求證:MC⊥PN.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖:四面體P-ABC為正四面體,M為PC的中點,則BM與AC所成的角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,E是AA1的中點,
(Ⅰ)求直線BC與A1C所成的角的度數(shù).
(Ⅱ)求證:A1C平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,正方體ABCD-A1B1C1D1中,AA1=2,E為棱CC1上的點,則B1D1與AE所成的角( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖ABCD-A1B1C1D1是正方體,B1E1=D1F1=
A1B1
4
,則BE1與DF1所成的角的余弦值是(  )
A.
15
17
B.
1
2
C.
8
17
D.
3
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,若AC=BD=a,且AC與BD所成的角為45°,則四邊形EFGH的面積為(  )
A.
2
16
a2
B.
2
8
a2
C.
2
4
a2
D.
2
2
a2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知長方體ABCD-A1B1C1D1中,AB=2,AD=AA1=1,則直線BD1與平面BCC1B1所成角的正弦值為( 。
A.
3
3
B.
2
2
C.
6
3
D.
1
2

查看答案和解析>>

同步練習冊答案