8.已知$\left\{\begin{array}{l}5x+4y≤26\\ 2x+5y-13≤0\\ x∈N\\ y∈N\end{array}\right.$,則目標(biāo)函數(shù)z=20x+10y的最大值為100.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合求得目標(biāo)函數(shù)的最大值.

解答 解:由約束條件$\left\{\begin{array}{l}5x+4y≤26\\ 2x+5y-13≤0\\ x∈N\\ y∈N\end{array}\right.$作出可行域如圖(圖中實(shí)點(diǎn)),

化目標(biāo)函數(shù)z=20x+10y為y=-2x+$\frac{z}{10}$,
由圖可知,當(dāng)直線y=-2x+$\frac{z}{10}$過(guò)點(diǎn)A(5,0)時(shí),直線在y軸上的截距最大,z有最大值為100.
故答案為:100.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列命題正確的個(gè)數(shù)是( 。
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②已知a=log47,b=log23,c=0.2-0.6,則a<b<c;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}$•$\overrightarrow$<0”;
④已知數(shù)列{an}為等比數(shù)列,則a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要條件.
A.3個(gè)B.4個(gè)C.1個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)z滿足z=1+$\frac{1}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)|$\overline{z}$|的模為( 。
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)F是拋物線x2=4y的焦點(diǎn),定點(diǎn)M(2,3),點(diǎn)P是該拋物線上的動(dòng)點(diǎn)(點(diǎn)P不在直線MF上),則△PMF周長(zhǎng)的最小值為4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè){an}是公比為q(q≠1)的無(wú)窮等比數(shù)列,若{an}中任意兩項(xiàng)之積仍是該數(shù)列中的項(xiàng),則稱(chēng){an}為“封閉等比數(shù)列”.給出以下命題:
(1)a1=3,q=2,則{an}是“封閉等比數(shù)列”;
(2)a1=$\frac{1}{2}$,q=2,則{an}是“封閉等比數(shù)列”;
(3)若{an},{bn}都是“封閉等比數(shù)列”,則{an•bn},{an+bn}也都是“封閉等比數(shù)列”;
(4)不存在{an},使{an}和{an2}都是“封閉等比數(shù)列”;
以上正確的命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ-4cosθ=0,直線l過(guò)點(diǎn)M(0,4)且斜率為-2.
(1)求曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,寫(xiě)出直線l的標(biāo)準(zhǔn)參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足$\frac{z}{2-i}$=i,則|z|( 。
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知不等式mx2-2x-m+1<0.
(1)若對(duì)任意實(shí)數(shù)x上述不等式恒成立,求m的取值范圍;
(2)若對(duì)一切m∈[-2,2]上述不等式恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=1,P在平面ABC內(nèi),且為△ABC外一點(diǎn),∠BPC=90°
(1)若PB=$\frac{1}{2}$,求PA;
(2)若∠APB=30°,求tan∠PBA.

查看答案和解析>>

同步練習(xí)冊(cè)答案