【題目】為了推廣電子支付,某公交公司推出支付寶和微信掃碼支付乘車優(yōu)惠活動,活動期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,現(xiàn)用表示活動推出第天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表1所示:

1

2

3

4

5

6

7

6

12

23

34

65

106

195

1

根據(jù)以上數(shù)據(jù)繪制了散點圖.

1)根據(jù)散點圖判斷,在活動期內(nèi),,均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù)建立關(guān)于的回歸方程,并預測活動推出第8天使用掃碼支付的人次;

3)優(yōu)惠活動結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下

支付方式

現(xiàn)金

乘車卡

掃碼

比列

10%

54%

36%

車隊為緩解周邊居民出行壓力,以90萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知每輛車每個月的運營成本約為0.978萬元.已知該線路公交車票價為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受6折優(yōu)惠,有的概率享受7折優(yōu)惠,有的概率享受8折優(yōu)惠,有的概率享受9折優(yōu)惠.預計該車隊每輛車每個月有1.5萬人次乘車,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設這批車需要年才能開始盈利,求的值.

參考數(shù)據(jù):

63

1.55

2561

50.40

3.55

其中,

參考公式:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計公式分別為:

【答案】1適宜作為掃碼支付的人次關(guān)于的回歸方程類型,(2),第8天使用掃碼支付的人次為355,(3

【解析】

1)根據(jù)散點圖判斷適宜作為掃碼支付的人次關(guān)于的回歸方程類型

2)由兩邊同時取對數(shù)得,設,即,然后按照公式計算即可

3)先列出一名乘客乘車支付的費用的分布列,然后算出其平均值,然后根據(jù)條件即可建立不等式求解

1)根據(jù)散點圖判斷適宜作為掃碼支付的人次關(guān)于的回歸方程類型

2)因為,兩邊同時取對數(shù)得

,即

因為,,

所以

把樣本中心點代入

所以,即

所以關(guān)于的回歸方程為

代入上式得

所以活動推出第8天使用掃碼支付的人次為355

3)記一名乘客乘車支付的費用為Z,

Z的取值可能為2,1.8,1.6,1.41.2

;

其分布列為:

Z

2

1.8

1.6

1.4

1.2

P

0.1

0.18

0.63

0.06

0.03

所以,一名乘客一次乘車的平均費用為:

因為每輛車每個月的運營成本約為0.978萬元,每輛車每個月有1.5萬人次乘車,

買車費用是90萬元,假設經(jīng)過年開始盈利

所以

解得,即第五年開始盈利,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|lnx|,g(x)=,則方程|f(x)+g(x)|=1實根的個數(shù)為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽已建的倉庫的底面直徑為,高,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽.現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大 (高不變);二是高度增加,(底面直徑不變).

1)分別計算按這兩種方案所建的倉庫的體積;

2)分別計算按這兩種方案所建的倉庫的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃河被稱為我國的母親河,它的得名據(jù)說來自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現(xiàn)黃色, 黃河的水源來自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經(jīng)黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線,設黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設從交匯處開始沿岸設有若干個觀測點,兩股河水在流經(jīng)相鄰的觀測點的過程中,其混合效果相當于兩股河水在1秒內(nèi)交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.

1)求經(jīng)過第二個觀測點時,兩股河水的含沙量;

2)從第幾個觀測點開始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋中有3個紅球4個白球,從中取出2個球.下面幾個命題:

1)如果是不放回地抽取,那么取出1個紅球,1個白球的概率是

2)如果是不放回地抽取,那么在至少取出一個紅球的條件下,第2次取出紅球的概率是

3)如果是有放回地抽取,那么取出1個紅球1個白球的概率是

4)如果是有放回地抽取,那么第2次取到紅球的概率和第1次取到紅球的概率相同.

其中正確的命題是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高三理科班共有名同學參加某次考試,從中隨機挑出名同學,他們的數(shù)學成績與物理成績如下表:

數(shù)學成績

物理成績

1)數(shù)據(jù)表明之間有較強的線性關(guān)系,求的線性回歸方程;

2)本次考試中,規(guī)定數(shù)學成績達到分為優(yōu)秀,物理成績達到分為優(yōu)秀.若該班數(shù)學優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的名同學外,剩下的同學中數(shù)學優(yōu)秀但物理不優(yōu)秀的同學共有人,請寫出列聯(lián)表,判斷能否在犯錯誤的概率不超過的前提下認為數(shù)學優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):;;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校實行自主招生,參加自主招生的學生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.

1)試通過概率計算,分析甲、乙兩人誰通過自主招生初試的可能性更大;

2)若答對一題得5分,答錯或不答得0分,記乙答題的得分為,求的分布列及數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDA1B1C1D1中,E,F分別為ABA1C的中點,且AA1AD

1)求直線EF與平面ABCD所成角的大小;

2)若EFAB,求二面角BA1CD的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在交通工程學中,常作如下定義:交通流量(輛/小時):單位時間內(nèi)通過道路上某一橫斷面的車輛數(shù);車流速度(千米/小時):單位時間內(nèi)車流平均行駛過的距離;車流密度(輛/千米):單位長度道路上某一瞬間所存在的車輛數(shù). 一般的,滿足一個線性關(guān)系,即(其中是正數(shù)),則以下說法正確的是

A. 隨著車流密度增大,車流速度增大

B. 隨著車流密度增大,交通流量增大

C. 隨著車流密度增大,交通流量先減小,后增大

D. 隨著車流密度增大,交通流量先增大,后減小

查看答案和解析>>

同步練習冊答案