設(shè)O為坐標(biāo)原點(diǎn),M(1,2),若N(x,y)滿足
2x+y-4≤0
x-y+2≥0
,則
OM
ON
的最大值為( 。
分析:根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算公式,得
OM
ON
=x+2y.作出題中不等式組表示的平面區(qū)域,得如圖的陰影部分,將目標(biāo)函數(shù)z=x+2y對(duì)應(yīng)的直線進(jìn)行平移,可得當(dāng)x=
2
3
,y=
8
3
時(shí),z=x+2y達(dá)到最大值,即
OM
ON
取得最大值.
解答:解:∵M(jìn)(1,2),N(x,y),∴目標(biāo)函數(shù)z=
OM
ON
=x+2y
作出不等式組
2x+y-4≤0
x-y+2≥0
表示的平面區(qū)域,
得到直線2x+y-4=0下方,且在直線x-y+2=0下方的平面區(qū)域
即如圖的陰影部分,其中A(
2
3
,
8
3
)為兩條直線的交點(diǎn)
設(shè)z=F(x,y)=x+2y,將直線l:z=x+2y進(jìn)行平移,
當(dāng)l經(jīng)過(guò)點(diǎn)A時(shí),目標(biāo)函數(shù)z達(dá)到最大值
∴z最大值=F(
2
3
,
8
3
)=6
故選:B
點(diǎn)評(píng):本題給出二元一次不等式組,求目標(biāo)函數(shù)z=
OM
ON
的最大值,著重考查了二元一次不等式組表示的平面區(qū)域、向量數(shù)量積的坐標(biāo)運(yùn)算公式和簡(jiǎn)單的線性規(guī)劃等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),M(2,1),點(diǎn)N(x,y)滿足
x-4y≤-3
3x+5y≤25
x≥1
,則
OM
ON
的最大值是( 。
A、9B、2C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,一條準(zhǔn)線l:x=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),M是l上的點(diǎn),F(xiàn)為橢圓C的右焦點(diǎn),過(guò)點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓D交于P,Q兩點(diǎn).
①若PQ=
6
,求圓D的方程;
②若M是l上的動(dòng)點(diǎn),求證:點(diǎn)P在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),M(2,1),點(diǎn)N(x,y)滿足
x-4y≤-3
3x+5y≤25
x≥1
,則|
ON
|cos∠MON的最大值為
12
5
5
12
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)N(x,y)的坐標(biāo)滿足
x≥0, y≥0
2x+y-1≤0
,設(shè)O為坐標(biāo)原點(diǎn),M(1,-2),則
OM
ON
的最小值為( 。
A、-4
B、-2
C、1
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案