(2013•崇明縣二模)閱讀程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的自然數(shù)為
5
5
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.
解答:解:程序在運行過程中各變量的值如下表示:
         S   i  是否繼續(xù)循環(huán)
循環(huán)前   1   1/
第一圈3   2     是
第二圈7  3     是
第三圈15   4     是
第四圈31   5     否
故最后當(dāng)i<5時退出,
故答案為:5.
點評:根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中抽取200件,對其等級系數(shù)進行統(tǒng)計分析,得到頻率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
則在所抽取的200件日用品中,等級系數(shù)X=1的件數(shù)為
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知數(shù)列{an}是各項均不為0的等差數(shù)列,公差為d,Sn為其前n項和,且滿足an2=S2n-1,n∈N*.?dāng)?shù)列{bn}滿足bn=
1anan+1
,n∈N*,Tn為數(shù)列{bn}的前n項和.
(1)求數(shù)列{an}的通項公式an和數(shù)列{bn}的前n項和Tn
(2)若對任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)設(shè)函數(shù) f(x)=
2x      (x≤0)
log2x (x>0)
,函數(shù)y=f[f(x)]-1的零點個數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知函數(shù)f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,則f(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D為斜邊AB的中點,則 
AB
CD
=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案