已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比關(guān)系,Sn為{an}的前n項(xiàng)和,則數(shù)學(xué)公式的值為


  1. A.
    2
  2. B.
    3
  3. C.
    數(shù)學(xué)公式
  4. D.
    不存在
A
分析:根據(jù)此數(shù)列為等差數(shù)列,由a1,a3,a4成等比關(guān)系得到a32=a1a4,然后利用等差數(shù)列的通項(xiàng)公式化簡(jiǎn)根據(jù)d不等于0得到關(guān)于a1和d的關(guān)系式,并用含d的代數(shù)式表示出a1,把所求的式子利用等差數(shù)列的性質(zhì)化簡(jiǎn)后,把關(guān)于a1的代數(shù)式代入即可求出值.
解答:因?yàn)閧an}為等差數(shù)列,由a1,a3,a4成等比關(guān)系,得到a32=a1a4即(a1+2d)2=a1(a1+3d),
化簡(jiǎn)得d(a1+4d)=0由d≠0得到a1+4d=0,所以a1=-4d即a5=0,
====2
故選A.
點(diǎn)評(píng):考查學(xué)生掌握等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式,靈活運(yùn)用等差數(shù)列的性質(zhì)解決實(shí)際問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比關(guān)系,Sn為{an}的前n項(xiàng)和,則
S3-S2
S5-S3
的值為( 。
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a
 
2
2
+a
 
2
3
=a
 
2
7
+a
 
2
8
,則S9=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}滿足a2=3,a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=
an
an+1
+
an+1
an
,求數(shù)列{bn}的前n項(xiàng)和Sn;
(Ⅲ)設(shè)cn=2n(
an+1
n
-λ)
,若數(shù)列{cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=a4+6,且a1,a4,a13成等比數(shù)列,則a10=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃州區(qū)模擬)已知公差不為0的等差數(shù)列{an}的前3項(xiàng)和S3=9,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和Sn
(2)設(shè)Tn為數(shù)列{
1anan+1
}的前n項(xiàng)和,若Tn≤λan+1對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案