A. | 直角三角形 | B. | 等邊三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
分析 由余弦定理易得A=$\frac{π}{3}$,再由和差角公式可得B=$\frac{π}{2}$,可判三角形形狀.
解答 解:△ABC中,∵(a+b+c)(b+c-a)=3bc,
∴(b+c)2-a2=3bc,
∴b2+c2-a2=bc,
∴cosA=$\frac{^{2}{+c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∴A=$\frac{π}{3}$,
又∵sinA=sinBcosC,
∴sin(B+C)=sinBcosC,
∴sinBcosC+cosBsinC=sinBcosC,
∴cosBsinC=0,
∴cosB=0,B=$\frac{π}{2}$,
∴△ABC是直角三角形.
故選:A.
點評 本題考查三角形形狀的判定,涉及余弦定理和和差角的三角函數(shù)公式,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | ||
C. | 鈍角三角形 | D. | 等腰非直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 1 | C. | -1 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com