已知非零向量a,b,c滿足a+b+c=0,向量a與b的夾角為60°,且|a|=|b|=1,則向量a與c的夾角為( ).
A.30° B.60° C.120° D.150°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)3練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=cos,x∈R
(1)求f的值;
(2)若cos θ=,θ∈,求f.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測(cè)評(píng)1練習(xí)卷(解析版) 題型:填空題
若P0(x0,y0)在橢圓=1(a>b>0)外,則過P0作橢圓的兩條切線的切點(diǎn)為P1,P2,則切點(diǎn)弦P1P2所在直線方程是=1.那么對(duì)于雙曲線則有如下命題:若P0(x0,y0)在雙曲線=1(a>0,b>0)外,則過P0作雙曲線的兩條切線的切點(diǎn)為P1,P2,則切點(diǎn)弦P1P2所在的直線方程是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練9練習(xí)卷(解析版) 題型:填空題
若等比數(shù)列{an}滿足a2+a4=20,a3+a5=40,則公比q=________;前n項(xiàng)和Sn=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練8練習(xí)卷(解析版) 題型:解答題
已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,設(shè)向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).
(1)若m∥n,求證:△ABC為等腰三角形;
(2)若m⊥p,邊長(zhǎng)c=2,C=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練7練習(xí)卷(解析版) 題型:解答題
如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°.
(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練7練習(xí)卷(解析版) 題型:選擇題
已知α∈R,sin α+2cos α=,則tan 2α等于( ).
A. B. C.- D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練17練習(xí)卷(解析版) 題型:填空題
利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a-1>0”發(fā)生的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練13練習(xí)卷(解析版) 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com