設(shè)A、B是橢圓3x2+y2=λ上的兩點,點N(1,3)是線段AB的中點,線段AB的垂直平分線與橢圓相交于C、D兩點.
(Ⅰ)確定λ的取值范圍,并求直線AB的方程;
(Ⅱ)試判斷是否存在這樣的λ,使得A、B、C、D四點在同一個圓上?并說明理由.
分析:(Ⅰ)解法一:設(shè)直線AB的方程為y=k(x-1)+3,代入3x
2+y
2=λ,整理得:(k
2+3)x
2-2k(k-3)x+(k-3)
2-λ=0,然后結(jié)合題設(shè)條件由根與經(jīng)數(shù)的關(guān)系和根的判別式能夠求出直線AB的方程.
解法二:設(shè)A(x
1,y
1),B(x
2,y
2),則有
?3 (x
1-x
2) (x
1+x
2)+(y
1-y
2)=0.∴k
AB=-
.∵N(1,3)是AB的中點∴k
AB=-1.由此能夠求出直線AB的方程.
(Ⅱ)解法一:由題意知直線CD的方程為x-y+2=0代入橢圓方程,整理得4x
2+4x+4-λ=0.由弦長公式可得|CD|=
•|x
3-x
4|=
.將直線AB的方程x+y-4=0代入橢圓方程得4x
2-8x+16-λ=0.同理可得|AB|=
•|x
1-x
2|=
.由此可以推出存在這樣的λ,使得A、B、C、D四點在同一個圓上.
解法二:由題高設(shè)條件可知λ>12,直線CD的方程為y-3=x-1,代入橢圓方程,整理得4x
2+4x+4-λ=0.將直線AB的方程x+y-4=0代入橢圓方程整理得4x
2-8x+16-λ=0,由此通過計算知
•
=0,∴A在以CD為直徑的圓上.又B為A關(guān)于CD的對稱點,∴A、B、C、D四點共圓.
解答:解:(Ⅰ)解法一:依題意,可設(shè)直線AB的方程為y=k(x-1)+3,
代入3x
2+y
2=λ,整理得:(k
2+3)x
2-2k(k-3)x+(k-3)
2-λ=0①
設(shè)A(x
1,y
1),B(x
2,y
2),則x
1,x
2是方程①的兩個不同的根,
∴△=4[λ(k
2+3)-3(k-3)
2]>0,②
且x
1+x
2=
.由N(1,3)是線段AB的中點,得x
1+x
2=2,
∴k(k-3)=k
2+3解得k=-1,代入②得λ>12,
即λ的取值范圍是(12,+∞).
于是直線AB的方程為y-3=-(x-1),即x+y-4=0.
解法二:設(shè)A(x
1,y
1),B(x
2,y
2),則有
?3 (x
1-x
2) (x
1+x
2)+(y
1-y
2)=0.
依題意,x
1≠x
2,∴k
AB=-
.
∵N(1,3)是AB的中點,∴x
1+x
2=2,y
1+y
2=6,從而k
AB=-1.
又由N(1,3)在橢圓內(nèi),∴λ>3×1
2+3
2=12,
∴λ的取值范圍是(12,+∞).
直線AB的方程為y-3=-(x-1),即x+y-4=0.
(Ⅱ)解法一:∵CD垂直平分AB,
∴直線CD的方程為y-3=x-1,即x-y+2=0代入橢圓方程,整理得4x
2+4x+4-λ=0.③
又設(shè)C(x
3,y
3),D(x
4,y
4),CD的中點為M(x
0,y
0),
則x
3,x
4是方程③的兩根,
∴x
3+x
4=-1,且x
0=
=-
,y
0=x
0+2=
,即M(
-,
)
于是由弦長公式可得|CD|=
•|x
3-x
4|=
.④
將直線AB的方程x+y-4=0代入橢圓方程得4x
2-8x+16-λ=0.⑤
同理可得|AB|=
•|x
1-x
2|=
.⑥
∵當(dāng)λ>12時,
>
,
∴|AB|<|CD|.
假設(shè)存在λ>12,使得A、B、C、D四點共圓,則CD必為圓的直徑,點M為圓心.
點M到直線AB的距離為d=
=
=
.⑦
于是,由④⑥⑦式及勾股定理可得|MA|
2=|MB|
2=d
2+
||2=
+
=
=
||2.
故當(dāng)λ>12時,A、B、C、D四點均在以M為圓心,|
|為半徑的圓上.
(注:上述解法中最后一步可按如下解法獲得:
A、B、C、D共圓?ACD為直角三角形,A為直角?|AN|
2=|CN|•|DN|,
即
()2=(|
|+d)(|
|-d).⑧
由⑥式知,⑧式左邊=
,
由④⑦知,⑧式右邊=(
+
)(
-
)=
-
=
.
∴⑧式成立,即A、B、C、D四點共圓.)
解法二:由(Ⅱ)解法一知λ>12,
∵CD垂直平分AB,
∴直線CD的方程為y-3=x-1,代入橢圓方程,整理得4x
2+4x+4-λ=0.③
將直線AB的方程x+y-4=0代入橢圓方程整理得4x
2-8x+16-λ=0.⑤
解③和⑤式可得x
1,2=
,x
3,4=
,
不妨設(shè)A(1+
,3-
),
C(
,
),D(
,
).
∴
=(
,
),
=(
,
),
計算可得
•
=0,
∴A在以CD為直徑的圓上.
又B為A關(guān)于CD的對稱點,
∴A、B、C、D四點共圓.
點評:本題綜合考查直線和橢圓的位置關(guān)系,難度較大,解題時要仔細(xì)審題,注意公式的靈活運用.