1.某人第一天8:00從A地開車出發(fā),6小時(shí)后到達(dá)B地,第二天8:00從B地出發(fā),沿原路6小時(shí)后返回A地.則在此過程中,以下說法中
①一定存在某個(gè)位置E,兩天經(jīng)過此地的時(shí)刻相同
②一定存在某個(gè)時(shí)刻,兩天中在此刻的速度相同
③一定存在某一段路程EF(不含A、B),兩天在此段內(nèi)的平均速度相同.(以上速度不考慮方向)
正確說法的序號(hào)是①②.

分析 ①設(shè)函數(shù)s(t)表示此人第一天距離A地的路程,則其是一個(gè)不減的函數(shù),設(shè)函數(shù)l(t)表示此人第二天距離A地的路程,則其是一個(gè)不增的函數(shù),畫出函數(shù)的大致圖象,由圖可知①正確;
②畫出兩天的速度(自變量為時(shí)間t)函數(shù)圖象并求定積分(即與x軸圍城的面積),由定積分相等可知兩函數(shù)在(0,6)內(nèi)必有交點(diǎn)可知②正確;
③結(jié)合題意舉例說明錯(cuò)誤.

解答 解:①、設(shè)函數(shù)s(t)表示此人第一天距離A地的路程,則其是一個(gè)不減的函數(shù),設(shè)函數(shù)l(t)表示此人第二天距離A地的路程,則其是一個(gè)不增的函數(shù),其中t表示時(shí)間,s(t)、l(t)的定義域都是[0,6],值域相同.同一坐標(biāo)系畫出s(t)、l(t)的圖象,必有一個(gè)交點(diǎn),即兩天中在此刻經(jīng)過此點(diǎn)(如圖1),故①正確;
②、畫出兩天的速度(自變量為時(shí)間t)函數(shù)圖象并求定積分(即與x軸圍城的面積),其幾何意義就是路程,不可能一個(gè)總在另一個(gè)下方.在交點(diǎn)處時(shí)刻,他們的速度相等(如圖2),故②正確;
③、在某個(gè)路程函數(shù)s(t)中,過s(t) 上一點(diǎn)作平行于t,s軸的矩形,如果四個(gè)頂點(diǎn)都在曲線上,則意味著速度的絕對(duì)值相等,(對(duì)角線就是割線,斜率就是平均速度),但不是每種函數(shù)曲線都能成功,圖3 顯示可以,函數(shù)模型就是兩個(gè)一次函數(shù),圖4顯示不成功,可以構(gòu)造函數(shù)模型為(這里假定時(shí)間t∈(0,6)AB之間距離為4)$s(x)=\left\{\begin{array}{l}\frac{1}{2}x,x∈(0,2)\\ \frac{3}{4}x-\frac{1}{2},x∈[2,6)\end{array}\right.$,$l(x)=\left\{\begin{array}{l}-3x+4,x∈(0,1)\\-\frac{1}{5}(x-6),x∈[1,6)\end{array}\right.$.在這個(gè)圖象上經(jīng)計(jì)算,找不到這樣的矩形,故③錯(cuò)誤.
∴正確的說法是①②.
故答案為:①②.

點(diǎn)評(píng) 本題考查函數(shù)的圖象,貼近生活,敘述簡單,考察學(xué)生運(yùn)用數(shù)學(xué)知識(shí)分析問題解決問題的能力,運(yùn)用了數(shù)學(xué)建模思想,函數(shù)與方程思想,數(shù)形結(jié)合思想,對(duì)具體問題進(jìn)行抽象思維,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.閱讀下列偽代碼,當(dāng)a,b的輸入值分別為2,3時(shí),則輸出的實(shí)數(shù)m的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z=x+(y-1)i(x,y∈R),若|z|≤1,則x+y≥2的概率為( 。
A.$\frac{1}{4}$B.$\frac{π-2}{4π}$C.$\frac{1}{2π}$D.$\frac{3π+2}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^{1-x}},x≤1}\\{1-log_2^x,x>1}\end{array}}\right.$,則滿足f(x)≤4的x取值范圍是( 。
A.[-1,+∞)B.$[\frac{1}{8},+∞)$C.$[-1,\frac{1}{8}]$D.$[\frac{1}{8},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sin43°=a,則a<$\frac{{\sqrt{2}}}{2}$(填“>”或“<”);sin73°=$\frac{\sqrt{3}a+\sqrt{1{-a}^{2}}}{2}$(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$sin({α+\frac{π}{6}})=\frac{4}{5}$,則$cos({α-\frac{π}{3}})$的值為( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知命題p:關(guān)于x的方程x2-ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若p∧q是真命題,則實(shí)數(shù)a的取值范圍是[-12,-4]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的圖象在 y軸左側(cè)的第一個(gè)最高點(diǎn)為(-$\frac{π}{6}$,3),第-個(gè)最低點(diǎn)為(-$\frac{2π}{3}$,m),則函數(shù)f(x)的解析式為(  )
A.f(x)=3sin($\frac{π}{6}$-2x)B.f(x)=3sin(2x-$\frac{π}{6}$)C.f(x)=3sin($\frac{π}{3}$-2x)D.f(x)=3sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若m=${∫}_{-1}^{1}$(6x2+tanx)dx,且(2x+$\sqrt{3}$)m=a0+a1x+a2x2+…+amxm,則(a0+a2+…+am2-(a1+..+am-12的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案