(理科)已知在半徑為2的球面上有A、B、C、D四點,若AB=CD=2,則四面體ABCD的體積的最大值為(▲ )

(A)         (B)      (C)        (D)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市黃浦區(qū)高三上學(xué)期期終基礎(chǔ)學(xué)業(yè)測評理科數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)本題共有2個小題,第1小題滿分6分,第2小題滿分10分.

  已知兩點,點是直角坐標(biāo)平面上的動點,若將點的橫坐標(biāo)保持不變、縱坐標(biāo)擴大到倍后得到點滿足

(1) 求動點所在曲線的軌跡方程;

(2)(理科)過點作斜率為的直線交曲線兩點,且滿足,又點關(guān)于原點O的對稱點為點,試問四點是否共圓,若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.

(文科)過點作斜率為的直線交曲線兩點,且滿足(O為坐標(biāo)原點),試判斷點是否在曲線上,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2012年高考新課標(biāo)全國卷理科20)(本小題滿分12分)

設(shè)拋物線的焦點為,準線為,,已知以為圓心,

為半徑的圓兩點;

(1)若,的面積為;求的值及圓的方程;

(2)若三點在同一直線上,直線平行,且只有一個公共點,

求坐標(biāo)原點到距離的比值.

查看答案和解析>>

同步練習(xí)冊答案