【題目】如圖,矩形所在平面垂直于直角梯形所在平面,,分別是的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的正切值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)由幾何關(guān)系可知四邊形是平行四邊形,則. 由線面平行的判定定理可得平面. 由中位線的性質(zhì)可知,則面 利用面面平行的判定定理即可證得平面平面.
(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,計(jì)算可得平面的一個(gè)法向量.而平面的一個(gè)法向量為.據(jù)此可得,然后結(jié)合同角三角函數(shù)基本關(guān)系求解二面角的正切值即可.
(1)因?yàn)?/span>是的中點(diǎn),,所以.
又因?yàn)?/span>, ,所以,且,
所以四邊形是平行四邊形,所以.
又因?yàn)?/span>平面平面,所以平面.
因?yàn)?/span>分別是的中點(diǎn),所以.
又因?yàn)?/span>平面平面,所以面
又因?yàn)?/span>平面平面,所以平面平面.
(2)以為坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,則,
所以.
設(shè)平面的一個(gè)法向量為,則,令,得,
所以.
易知平面的一個(gè)法向量為.
所以.
又因?yàn)槎娼?/span>的平面角為銳角,所以二面角的正切值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點(diǎn)向下平移1個(gè)單位,然后橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到曲線.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線相交于兩點(diǎn),求三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題共13分)已知函數(shù) 的最小正周期為.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間及其圖象的對(duì)稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為 人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺(jué)性一致),數(shù)學(xué)期終考試成績(jī)莖葉圖如下:
(1)現(xiàn)從乙班數(shù)學(xué)成績(jī)不低于 分的同學(xué)中隨機(jī)抽取兩名同學(xué),求至少有一名成績(jī)?yōu)?/span> 分的同學(xué)被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于 分的優(yōu)秀,請(qǐng)?zhí)顚?xiě)下面的聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
附:參考公式及數(shù)據(jù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)計(jì)劃設(shè)計(jì)建造一條2000米長(zhǎng)的水渠,其橫斷面如圖所示.其中,底部是半徑為1米的圓弧,上部是有一定傾角的線段與,渠深為米,且圓弧的圓心為O在上,,,,.據(jù)測(cè)算,水渠底部曲面每平方米的造價(jià)為百元,上部矩形壁面每平方米的造價(jià)為1百元,其他費(fèi)用忽略不計(jì).設(shè),.
(1)試用表示水渠建造的總費(fèi)用(單位:百元);
(2)試確定的值,使得建造總費(fèi)用最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.
(1)討論的單調(diào)性
(2)求實(shí)數(shù)和a的值
(3)證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2020年清明節(jié)前后3天每天下雨的概率為60%,通過(guò)模擬實(shí)驗(yàn)的方法來(lái)計(jì)算該地區(qū)這3天中恰好有2天下雨的概率:用隨機(jī)數(shù)(,且)表示是否下雨:當(dāng)時(shí)表示該地區(qū)下雨,當(dāng)時(shí),表示該地區(qū)不下雨,從隨機(jī)數(shù)表中隨機(jī)取得20組數(shù)如下
332 714 740 945 593 468 491 272 073 445
992 772 951 431 169 332 435 027 898 719
(1)求出的值,并根據(jù)上述數(shù)表求出該地區(qū)清明節(jié)前后3天中恰好有2天下雨的概率;
(2)從2011年開(kāi)始到2019年該地區(qū)清明節(jié)當(dāng)天降雨量(單位:)如下表:(其中降雨量為0表示沒(méi)有下雨).
時(shí)間 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
降雨量 | 29 | 28 | 26 | 27 | 25 | 23 | 24 | 22 | 21 |
經(jīng)研究表明:從2011年開(kāi)始至2020年, 該地區(qū)清明節(jié)有降雨的年份的降雨量與年份成線性回歸,求回歸直線,并計(jì)算如果該地區(qū)2020年()清明節(jié)有降雨的話,降雨量為多少?(精確到0.01)
參考公式:.
參考數(shù)據(jù):,,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)對(duì)任意的,,,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)證明:在區(qū)間上存在唯一零點(diǎn);
(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com