已知函數(shù)的導(dǎo)函數(shù),且的值為整數(shù),當(dāng)時(shí),所有可能取的整數(shù)值有且只有1個(gè),則   。
4
,由題意得
,所以n。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)在兩個(gè)極值點(diǎn),且。
(Ⅰ)求滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫(huà)出滿足這些條件的點(diǎn)的區(qū)域;

(II)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)為常數(shù));.若直線l1、l2與函數(shù)f(x)的圖象以及l(fā)1,y軸與函數(shù)f(x)的圖象所圍成的封閉圖形如陰影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;
(Ⅲ)若問(wèn)是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)的導(dǎo)數(shù)
(1)y=(x2-2x+3)e2x;
(2)y=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),其中。
(1)當(dāng)滿足什么條件時(shí),取得極值?
(2)已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),在(-∞,-1),(2,+∞)上單調(diào)遞增,在(-1,2)上單調(diào)遞減,當(dāng)且僅當(dāng)x>4時(shí),
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)與函數(shù)f(x)、g(x)的圖象共有3個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是定義在,,上的奇函數(shù),當(dāng),時(shí),(a為實(shí)數(shù)).
 。1)當(dāng),時(shí),求的解析式;
 。2)若,試判斷在[0,1]上的單調(diào)性,并證明你的結(jié)論;
 。3)是否存在a,使得當(dāng),時(shí),有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),.
⑴當(dāng)時(shí),求函數(shù)圖象上的點(diǎn)到直線距離的最小值;
⑵是否存在正實(shí)數(shù),使對(duì)一切正實(shí)數(shù)都成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)已知函數(shù) 且導(dǎo)數(shù).
(Ⅰ)試用含有的式子表示,并求單調(diào)區(qū)間; (II)對(duì)于函數(shù)圖象上的不同兩點(diǎn),如果在函數(shù)圖象上存在點(diǎn)(其中)使得點(diǎn)處的切線,則稱存在“伴侶切線”.特別地,當(dāng)時(shí),又稱存在“中值伴侶切線”.試問(wèn):在函數(shù)上是否存在兩點(diǎn)使得它存在“中值伴侶切線”,若存在,求出、的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案