已知函數(shù)(為常數(shù),且),且數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列。
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,當(dāng)時(shí),求數(shù)列的前n項(xiàng)和。
(Ⅰ)詳見(jiàn)解析;(Ⅱ).
【解析】
試題分析:(Ⅰ)數(shù)列是等比數(shù)列,只需證明等于一個(gè)與無(wú)關(guān)的常數(shù)即可,由已知數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列,故,即,可求得,代入即可數(shù)列是等比數(shù)列;(Ⅱ)若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和,首先求出數(shù)列的通項(xiàng)公式,由(Ⅰ)可知,故,這是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)積所組成的數(shù)列,可利用錯(cuò)位相減法來(lái)求和,可求得.
試題解析:(Ⅰ)由題意知f(an)=4+(n-1)×2=2n+2, (2分)
即logkan=2n+2,∴an=k2n+2, (3分)
∴. (5分)
∵常數(shù)k>0且k≠1,∴k2為非零常數(shù),
∴數(shù)列{an}是以k4為首項(xiàng),k2為公比的等比數(shù)列。 (6分)
(Ⅱ)由(1)知,bn=anf(an)=k2n+2·(2n+2),
當(dāng)k=時(shí),bn=(2n+2)·2n+1=(n+1)·2n+2. (8分)
∴Sn=2·23+3·24+4·25++(n+1)·2n+2, ①
2Sn=2·24+3·25++n·2n+2+(n+1)·2n+3, ② (10分)
②-①,得Sn=―2·23―24―25――2n+2+(n+1)·2n+3
=―23―(23+24+25++2n+2)+(n+1)·2n+3,
∴Sn=―23―+(n+1)·2n+3=n·2n+3. (12分)
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合,數(shù)列求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)(為常數(shù),且)的圖象過(guò)點(diǎn),且函數(shù)的最大值為2。
(1)、求函數(shù)的解析式,并寫(xiě)出其單調(diào)遞增區(qū)間。
(2)、若函數(shù)的圖象按向量作移動(dòng)距離最小的平移后,使所的圖象關(guān)于y軸對(duì)稱(chēng),求出向量的坐標(biāo)及平移后的圖象對(duì)應(yīng)的函數(shù)解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)、為 常數(shù),且)的圖象過(guò) 點(diǎn)(0,),且函數(shù)的最大值為2。
⑴求函數(shù)的解析式,并寫(xiě)出其單調(diào)遞增區(qū)間;
⑵若函數(shù)的圖象按向量作移動(dòng)距離最小的平移后,使所得圖象關(guān)于軸對(duì)稱(chēng),求出向量的坐標(biāo)及平移后的圖象對(duì)應(yīng)的函數(shù)解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三第二次階段性考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)(為常數(shù),且),對(duì)于定義域內(nèi)的任意兩個(gè)實(shí)數(shù)、,恒有成立,則正整數(shù)可以取的值有
A.4個(gè) B.5個(gè) C.6 個(gè) D.7個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三10月階段性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)(為常數(shù),且),對(duì)于定義域內(nèi)的任意兩個(gè)實(shí)數(shù)、,恒有成立,則正整數(shù)可以取的值有
A.4個(gè) B.5個(gè) C.6 個(gè) D.7個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷二文科數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù)(為常數(shù),且),且數(shù)列是首項(xiàng)為4,
公差為2的等差數(shù)列.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ) 若,當(dāng)時(shí),求數(shù)列的前項(xiàng)和;
(III)若,且>1,比較與的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com