已知是三角形的一個內(nèi)角,且sin-cos,則方程x2sin-y2cos=1可能表示下列曲線中的_________.(填上所有可能情況)

①焦點在x軸上的橢圓

②焦點在y軸上的橢圓

③焦點在x軸上的雙曲線

④焦點在y軸上的雙曲線

答案:③
解析:

  由sin-cos,得2sin()=

  ∴sin()=

  又∵為三角形的內(nèi)角,∴0<<π

  ∴-

  而sin()=,

  ∴0<

  ∴.∴sin>0,cos>0且sin≠cos

  ∴方程x2sin-y2cos=1表示焦點在x軸上的雙曲線.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知有關正三角形的一個結論:“在正三角形ABC中,若D是BC的中點,G是三角形ABC內(nèi)切圓的圓心,則
AG
GD
=2”.若把該結論推廣到正四面體(所有棱長均相等的三棱錐),則有結論:“在正四面體ABCD中,若M是正三角形BCD的中心,O是在正四面體ABCD內(nèi)切球的球心,則
AO
OM
=
3
3
”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的內(nèi)接三角形有一個頂點在短軸的頂點處,其重心是橢圓的一個焦點,求該橢圓離心率e的取值范圍( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)三個頂點均在橢圓上的三角形稱為橢圓的內(nèi)接三角形.已知點A是橢圓的一個短軸端點,如果以A為直角頂點的橢圓內(nèi)接等腰直角三角形有且僅有三個,則橢圓的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省高一理科實驗班預錄模擬數(shù)學試卷(解析版) 題型:解答題

如圖,已知銳角△ABC的面積為1,正方形DEFG是△ABC的一個內(nèi)接三角形,

DG∥BC,求正方形DEFG面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省徐州市高二(下)期末數(shù)學試卷(文科)(解析版) 題型:填空題

已知有關正三角形的一個結論:“在正三角形ABC中,若D是BC的中點,G是三角形ABC內(nèi)切圓的圓心,則=2”.若把該結論推廣到正四面體(所有棱長均相等的三棱錐),則有結論:“在正四面體ABCD中,若M是正三角形BCD的中心,O是在正四面體ABCD內(nèi)切球的球心,則=    ”.

查看答案和解析>>

同步練習冊答案