(本小題滿分12分)某投資商到一開發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年蔬菜銷售收入為50萬(wàn)元.設(shè)表示前年的純利潤(rùn)總和, 表示前年的總支出.

[年的總收入-前年的總支出-投資額].

(1)寫出的關(guān)系式

(2) 寫出前年的純利潤(rùn)總和關(guān)于的函數(shù)關(guān)系式;并求該廠從第幾年開始盈利?

(3)若干年后,投資商為開發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方案:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以16萬(wàn)元萬(wàn)元出售該廠,問(wèn)哪種方案更合算?

 

【答案】

(1)  ()

(2)比較兩種方案,獲利都是144萬(wàn)元,但由于方案①只需6年,而方案②需10年,故選擇方案①更合算.

【解析】解:(1)由題意知  ()………2分

(2).…………3分

,即,解得.    ………5分

知,從第三年開始盈利.                       …………6分

(3)方案①:年平均純利潤(rùn)為

當(dāng)且僅當(dāng)時(shí)等號(hào)成立.                       …………8分

故方案①共獲利(萬(wàn)元), 此時(shí).…………9分

方案②: .

當(dāng)時(shí),.

故方案②共獲利(萬(wàn)元).                …………11分

比較兩種方案,獲利都是144萬(wàn)元,但由于方案①只需6年,而方案②需10年,故選擇方案①更合算.                           …………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案