設,圓:與軸正半軸的交點為,與曲線的交點為,直線與軸的交點為.
(1)用表示和;
(2)求證:;
(3)設,,求證:.
(1),
(2)根據(jù)題意,由于,
進而得到證明。
(3) 先證:當時,.然后借助于不等式關系放縮法求和比較大小。
【解析】
試題分析:(1)由點在曲線上可得,
又點在圓上,則,
從而直線的方程為, 由點在直線上得:
,將代入化簡得: .
(2) ,
又,
(3)先證:當時,.
事實上, 不等式
后一個不等式顯然成立,而前一個不等式.
故當時, 不等式成立.
,
(等號僅在n=1時成立)
求和得:
考點:數(shù)列的通項公式
點評:解決的關鍵是根據(jù)數(shù)列與函數(shù)的關系來得到表達式,同時能根據(jù)不等式的性質得到放縮法求和,證明不等式,屬于中檔題。
科目:高中數(shù)學 來源:2011-2012學年浙江省高三下學期2月聯(lián)考理科數(shù)學 題型:解答題
本題滿分14分)設,圓:與軸正半軸的交點為,與曲線的交點為,直線與軸的交點為.
(Ⅰ)求證:;
(Ⅱ)設,,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省佛山市高三教學質量檢測(一)理科數(shù)學 題型:解答題
設,圓:與軸正半軸的交點為,與曲線的交點為,直線與軸的交點為.
(1)用表示和;
(2)求證:;
(3)設,,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省佛山市高三教學質量檢測(一)文科數(shù)學 題型:解答題
設,圓:與軸正半軸的交點為,與曲線的交點為,直線與軸的交點為.
(1)用表示和;
(2)若數(shù)列滿足:.
①求常數(shù)的值使數(shù)列成等比數(shù)列;
②比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設,圓:與軸正半軸的交點為,與曲線的交點為,直線與軸的交點為.
(1)用表示和;
(2)若數(shù)列滿足:.
①求常數(shù)的值使數(shù)列成等比數(shù)列;
②比較與的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com