【題目】將函數(shù)f(x)=sinx的圖象向右平移 個(gè)單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為 .
【答案】
【解析】解:將函數(shù)f(x)=sinx的圖象向右平移 個(gè)單位后得到函數(shù)y=g(x)=sin(x﹣ )的圖象, 則函數(shù)y=f(x)+g(x)=sinx+sin(x﹣ )= sinx﹣ cosx= sin(x﹣ ) 的最大值為 ,
所以答案是: .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A是以BC為直徑的圓O上異于B,C的動點(diǎn),P為平面ABC外一點(diǎn),且平面PBC⊥平面ABC,BC=3,PB=2,PC,則三棱錐P﹣ABC外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的一套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結(jié)論中不正確的是( )
A. 2018年1月至4月的倉儲指數(shù)比2017年同期波動性更大
B. 2017年、2018年的最大倉儲指數(shù)都出現(xiàn)在4月份
C. 2018年全年倉儲指數(shù)平均值明顯低于2017年
D. 2018年各月倉儲指數(shù)的中位數(shù)與2017年各月倉儲指數(shù)中位數(shù)差異明顯
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為 .
(1)求a,b;
(2)設(shè)過F2的直線l與C的左、右兩支分別相交于A、B兩點(diǎn),且|AF1|=|BF1|,證明:|AF2|、|AB|、|BF2|成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解開展校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個(gè)等級,同時(shí)對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | [20,40) | [40,60) | [60,80) | [80,100] |
頻數(shù) | 6 | a | 24 | b |
(1)求a,b,c的值;
(2)先用分層抽樣的方法從評定等級為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談,再從這10人中任選4人,記所選4人的量化總分為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ);
(3)某評估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來評估該校開展安全教育活動的成效.若≥0.7,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(2)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分別是AB,CD的中點(diǎn),將四邊形ADFE沿直線EF進(jìn)行翻折,給出四個(gè)結(jié)論:①DF⊥BC;
②BD⊥FC;
③平面DBF⊥平面BFC;
④平面DCF⊥平面BFC.
則在翻折過程中,可能成立的結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF中,AB=,CE=1,CE⊥平面ABCD.
(1)求異面直線DF與BE所成角的余弦值;
(2)求二面角A-DF-B的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com