分析 先求出線(xiàn)段AB的中垂線(xiàn)的斜率,再求出線(xiàn)段AB的中點(diǎn)的坐標(biāo),點(diǎn)斜式寫(xiě)出AB的中垂線(xiàn)得方程,并化為一般式.
解答 解:設(shè)A(0,2)、B(4,0).
直線(xiàn)AB的斜率 kAB=-$\frac{1}{2}$,所以線(xiàn)段AB的中垂線(xiàn)得斜率k=2,又線(xiàn)段AB的中點(diǎn)為(2,1),
所以線(xiàn)段AB的中垂線(xiàn)得方程為y-1=2(x-2)即2x-y-3=0,
故答案為:2x-y-3=0.
點(diǎn)評(píng) 本題考查利用點(diǎn)斜式求直線(xiàn)的方程的方法,此外,本題還可以利用線(xiàn)段的中垂線(xiàn)的性質(zhì)(中垂線(xiàn)上的點(diǎn)到線(xiàn)段的2個(gè)端點(diǎn)距離相等)來(lái)求中垂線(xiàn)的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z) | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin|x| | B. | y=sin2x | C. | y=-sinx+2 | D. | y=sinx+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{9}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0” | |
B. | 若p為真命題,q為假命題,則(¬p)∨q為真命題 | |
C. | 為了了解高考前高三學(xué)生每天的學(xué)習(xí)時(shí)間,現(xiàn)要用系統(tǒng)抽樣的方法從某班50個(gè)學(xué)生中抽取一個(gè)容量為10的樣本,已知50個(gè)學(xué)生的編號(hào)為1,2,3…50,若8號(hào)被選出,則18號(hào)也會(huì)被選出 | |
D. | 已知m、n是兩條不同直線(xiàn),α、β是兩個(gè)不同平面,α∩β=m,則“n?α,n⊥m”是“α⊥β”的充分條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com