分析 (1)假設(shè)g(x)∈M,即:存在k≠0,使g(kx)=$\frac{k}{2}$+g(x)得出k=$\frac{ax}{ax-\frac{1}{2}}$,k的取值與x有關(guān),不是常數(shù),與假設(shè)矛盾,從而得出結(jié)論;
(2)由于當log2(kx)=$\frac{k}{2}$+log2x成立時,等價于log2k=$\frac{k}{2}$,此式顯然當k=4時此式成立,可見,存在非零常數(shù)k=4,使g(kx)=$\frac{k}{2}$+g(x),從而得出答案.
解答 解:(1)假設(shè)f(x)∈M,即:存在k≠0,使f(kx)=$\frac{k}{2}$+f(x)⇒a(kx)+b=$\frac{k}{2}$+(ax+b)
⇒k=k=$\frac{ax}{ax-\frac{1}{2}}$⇒k的取值與x有關(guān),不是常數(shù),與假設(shè)矛盾
⇒f(x)不屬于集合M
(2)log2(kx)=$\frac{k}{2}$+log2x
⇒log2k+log2x=$\frac{k}{2}$+log2x
⇒log2k=$\frac{k}{2}$,
當k=4時此式成立,
可見,存在非零常數(shù)k=4,使g(kx)=$\frac{k}{2}$+g(x)
∴g(x)∈M,
故答案為:f(x)∉M,g(x)∈M.
點評 本小題主要考查元素與集合關(guān)系的判斷、對數(shù)的運算法則、對數(shù)函數(shù)的性質(zhì)、方程式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 6 | C. | -4或10 | D. | 0或6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2019 屆的優(yōu)秀學生 | B. | 高一數(shù)學必修一課本上的所有難題 | ||
C. | 遵義四中高一年級的所有男生 | D. | 比較接近 1 的全體正數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 存在 x≤0,ex≤x+1 | B. | 存在 x>0,ex≤x+1 | ||
C. | 存在 x≤0,ex>x+1 | D. | 對任意 x>0,ex≤x+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3-a<3-b | B. | $\frac{a}$<1 | C. | lg(a-b)>lg$\frac{1}{a-b}$ | D. | a2>b2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com