如圖,M、N、P分別是正方體的棱AB、BC、上的點.(1)若,求證:無論點P在上如何移動,總有BP⊥MN;(2)棱上是否存在這樣的點P,使得平面⊥平面?證明你的結論.

答案:略
解析:

如圖(1),結AC、BD,則BDAC,∴,∴.又平面ABCD,∴無論點P上如何移動,總有BP平面,故總有(2)解法1:存在點P,且P中點,使得平面平面.證明如下:,,∴平面.取中點E,連結PE,則,∴平面PE平面APC,平面平面,∴平面平面

解法2:假設存在點P,使平面平面,如圖(2),過PE,∴平面平面,∴,從而平面ABCD.分別延長、CD交于點F,連結AF,則,∴平面,.設AB=b,PD=x,則,,在中,.在中,,

,∴,

,解得,或x=b(舍去).∴存在點P,當P中點時,平面平面


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網現(xiàn)有一塊棱長為a的正方體形的木料,如圖,M、N、P分別為AD、CD、BB1的中點.現(xiàn)要沿過M、N、P三點的平面將木料鋸開.
(1)求作鋸面與平面AA1C1C的交線GH,其中G、H分別在C1C、AA1上(寫出作圖過程即可,不必證明),并說明GH與平面ABCD的關系,然后給出證明.
(2)若Q為C1D1的中點.求點P到平面MNQ的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,M、N、P分別為空間四邊形ABCD的邊AB,BC,CD上的點,且AM:MB=CN:NB=CP:PD.
求證:(1)AC∥平面MNP,BD∥平面MNP;
(2)平面MNP與平面ACD的交線∥AC.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省唐山一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,M、N、P分別為空間四邊形ABCD的邊AB,BC,CD上的點,且AM:MB=CN:NB=CP:PD.
求證:(1)AC∥平面MNP,BD∥平面MNP;
(2)平面MNP與平面ACD的交線∥AC.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省唐山一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,M、N、P分別為空間四邊形ABCD的邊AB,BC,CD上的點,且AM:MB=CN:NB=CP:PD.
求證:(1)AC∥平面MNP,BD∥平面MNP;
(2)平面MNP與平面ACD的交線∥AC.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省上饒市重點中學高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

現(xiàn)有一塊棱長為a的正方體形的木料,如圖,M、N、P分別為AD、CD、BB1的中點.現(xiàn)要沿過M、N、P三點的平面將木料鋸開.
(1)求作鋸面與平面AA1C1C的交線GH,其中G、H分別在C1C、AA1上(寫出作圖過程即可,不必證明),并說明GH與平面ABCD的關系,然后給出證明.
(2)若Q為C1D1的中點.求點P到平面MNQ的距離.

查看答案和解析>>

同步練習冊答案