已知函數(shù)y=f(x)的定義域?yàn)镽,且對(duì)任意a,b∈R,都有f(a+b)=f(a)+f(b),且當(dāng)x>0時(shí),f(x)<0恒成立,f(3)=-3.

(1)證明:函數(shù)y=f(x)是R上的減函數(shù);

(2)證明:函數(shù)y=f(x)是奇函數(shù);

(3)試求函數(shù)y=f(x)在[m,n](m,n∈Z)上的值域.


解析:

(1)證明  設(shè)x1,x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1).

∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)=f(x1)+f(x2-x1)<f(x1).

故f(x)是R上的減函數(shù).

(2)證明  ∵f(a+b)=f(a)+f(b)恒成立,∴可令a=-b=x,則有f(x)+f(-x)=f(0),

又令a=b=0,則有f(0)=f(0)+f(0),∴f(0)=0.從而x∈R,f(x)+f(-x)=0,

∴f(-x)=-f(x).故y=f(x)是奇函數(shù).

(3)解  由于y=f(x)是R上的單調(diào)遞減函數(shù),

∴y=f(x)在[m,n]上也是減函數(shù),故f(x)在[m,n]上的最大值f(x)max=f(m),最小值f(x)min=f(n).

由于f(n)=f(1+(n-1))=f(1)+f(n-1)=…=nf(1),同理f(m)=mf(1).

又f(3)=3f(1)=-3,∴f(1)=-1,∴f(m)=-m, f(n)=-n.

∴函數(shù)y=f(x)在[m,n]上的值域?yàn)椋?n,-m].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x+
1
2
)
為奇函數(shù),設(shè)g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說明為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)=
lnx
x

(1)求函數(shù)y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時(shí)的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個(gè)為真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案