如圖,四棱錐中,底面為直角梯形,∥, ,平面,且,為的中點(diǎn)
(1) 證明:面面
(2) 求面與面夾角的余弦值.
(1) 詳見解析;(2) 面與面夾角的余弦值.
【解析】
試題分析:(1) 證明:面面,在立體幾何中,證明面面垂直,往往轉(zhuǎn)化為證明線面垂直,即證一個(gè)平面過(guò)另一個(gè)平面的垂線,由已知,即,又因?yàn)?/span>∥,則,只需在平面內(nèi)再找一條垂線即可,由已知平面,從而得,這樣平面,即得面面;也可利用向量法, 以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,分別以為軸建立空間直角坐標(biāo)系,利用向量來(lái)證,即得,其它同上;
(2) 求面與面夾角的余弦值,可建立空間直角坐標(biāo)系,利用向量法求二面角的大小,由(1) 建立的間直角坐標(biāo)系,設(shè)出兩個(gè)半平面的法向量,利用法向量的性質(zhì),求出兩個(gè)半平面的法向量,利用法向量來(lái)求平面與平面的夾角的余弦值.
試題解析:(1) 以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為.
(1) 證明:因
由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面.
又在面上,故面⊥面. 5分
(2) 解:在上取一點(diǎn),則存在使
要使,只需,即,解得,可知當(dāng)時(shí),點(diǎn)的坐標(biāo)為,能使,此時(shí),,有,由得,所以為所求二面角的平面角.因?yàn)?/span>,,,故.
面與面夾角的余弦值. 12分
考點(diǎn):用空間向量求平面間的夾角;平面與平面垂直的判定;二面角的平面角及求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
39 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山西省高三第一次月考摸底理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,四棱錐中,底面為平行四邊形,,,⊥底面.①證明:平面平面; ②若二面角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省五校聯(lián)盟模擬考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
如圖,四棱錐中,底面為平行四邊形,,,⊥底面.
(1)證明:平面平面;
(2)若二面角為,求與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:黑龍江省10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
(本小題滿分12分)如圖,四棱錐中,底面為平行四邊形,,底面.
(1)證明:;
(2)若求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省濟(jì)寧市高二3月月考理科數(shù)學(xué)試卷 題型:解答題
如圖,四棱錐中,底面為平行四邊形,,,⊥底面.
(1)證明:平面平面;
(2)若二面角為,求與平面所成角的正弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com