【題目】已知以下三視圖中有三個同時表示某一個三棱錐,則不是該三棱錐的三視圖是 ( )

A. B.

C. D.

【答案】D

【解析】試題分析:四個三視圖均表示一個高為3,底面為兩直角邊分別為1,2的棱錐,AC中俯視圖正好旋轉(zhuǎn),故應(yīng)是從相反方向進行觀察,而其正視圖和側(cè)視圖中三角形斜邊傾斜方向相反,滿足實際情況,故A,C表示同一棱錐,設(shè)A中觀察的正方向為標(biāo)準(zhǔn)正方向,以C表示從后面觀察該棱錐,BD中俯視圖正好旋轉(zhuǎn),故應(yīng)是從相反方向進行觀察,但側(cè)視圖中三角形斜邊傾斜方向相同,不滿足實際情況,故B,D中有一個不與其它三個一樣表示同一個棱錐,根據(jù)B中正視圖與A中側(cè)視圖相同,側(cè)視圖與C中正視圖相同,可判斷B是從左邊觀察該棱錐,故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一鮮花店一個月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計如下:

日銷售量(枝)

0~49

50~99

100~149

150~199

200~250

銷售天數(shù)(天)

3天

3天

15天

6天

3天

將日銷售量落入各組區(qū)間的頻率視為概率.

(1)試求這30天中日銷售量低于100枝的概率;

(2)若此花店在日銷售量低于100枝的6天中選擇2天作促銷活動,求這2天的日銷售量都低于50枝的概率(不需要枚舉基本事件).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)設(shè),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分,為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格(單位:人).

1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?

2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出了3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,的數(shù)學(xué)期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列不等式的解集:

1

2

3

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個體戶計劃經(jīng)銷AB兩種商品,據(jù)調(diào)查統(tǒng)計,當(dāng)投資額為x(x≥0)萬元時,在經(jīng)銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投資額為零時收益為零.

(1)a,b的值;

(2)如果該個體戶準(zhǔn)備投入5萬元經(jīng)銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:①-2是函數(shù)的極值點;②1是函數(shù)的極值點;③處切線的斜率小于零;④在區(qū)間上單調(diào)遞增.則正確命題的序號是_______.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知O為坐標(biāo)原點,向量,點P滿足

)記函數(shù)·,求函數(shù)的最小正周期;

)若OP,C三點共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2)設(shè),對于任意,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案