分析 (1)取PB的中點(diǎn)為F,連接CF和EF,證明DC⊥PB,CF⊥PB,即可證明PB⊥平面CDE;
(2)利用VN-DCE=VE-DCN,求點(diǎn)N到平面CDE的距離.
解答 (1)證明:取PB的中點(diǎn)為F,連接CF和EF,
∵E是PA的中點(diǎn),∴EF∥AB∥DC,
∴平面CDE與平面CDEF為同一平面,
∵PC⊥底面ABCD,底面ABCD是矩形,
∴DCPC,DC⊥BC,即DC⊥平面PBC,∴DC⊥PB.
∵BC=PC,∴CF⊥PB,
∵CD∩CF=C,∴PB⊥平面CDE.
(2)解:過(guò)D作DG∥BM交BC于G,連接PG,
∵M(jìn)是AD的中點(diǎn),∴EM∥PD,
∵PD∩DG=D,∴平面PDG∥平面BEM,
∴當(dāng)N是AC與DG的交點(diǎn)時(shí),平面PDN∥平面BEM,
在矩形ABCD中,求得$\frac{CN}{AN}=\frac{CG}{AD}$=$\frac{1}{2}$,
∵BC=2AB=4,∴S△DCN=$\frac{1}{3}$,S△DCN=2$\sqrt{2}$,
E到平面ABCD的距離為2,設(shè)點(diǎn)N到平面CDE的距離為d,
由VN-DCE=VE-DCN得$\frac{1}{3}×2\sqrt{2}d=\frac{1}{3}×2×\frac{4}{3}$,解得d=$\frac{2\sqrt{2}}{3}$.
點(diǎn)評(píng) 本題考查線面垂直的判定,考查等體積法求點(diǎn)到平面的距離,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=x,$g(x)=\frac{x^2}{x}$ | B. | $f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$ | ||
C. | $f(x)={(\sqrt{x})^2}$,g(x)=x | D. | $f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1200 | B. | 600 | C. | 450 | D. | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=2x | B. | f(x)=2x | C. | f(x)=x+2 | D. | f(x)=log2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com