13.直線$\sqrt{3}x+ycosθ-1=0$的傾斜角的取值范圍是( 。
A.$[\frac{π}{6},\frac{π}{2})∪(\frac{π}{2},\frac{5π}{6}]$B.$[0,\frac{π}{3}]∪[\frac{2π}{3},π)$C.$[\frac{π}{6},\frac{5π}{6}]$D.$[\frac{π}{3},\frac{2π}{3}]$

分析 利用直線的傾斜角與斜率的關(guān)系,即可得出結(jié)論.

解答 解:設(shè)直線$\sqrt{3}x+ycosθ-1=0$的傾斜角為α,
則|tanα|=|$\frac{\sqrt{3}}{-cosθ}$|≥$\sqrt{3}$,
∴α∈$[\frac{π}{3},\frac{2π}{3}]$,
故選D.

點(diǎn)評(píng) 本題考查直線的傾斜角與斜率的關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}前n項(xiàng)和為Sn,Sn=n2+n+5,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.用系統(tǒng)抽樣法從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號(hào),按編號(hào)順序平均分成20組(1~8號(hào),9~16號(hào),…,153~160號(hào)).若假設(shè)第1組抽出的號(hào)碼為3,則第5組中用抽簽方法確定的號(hào)碼是( 。
A.33B.34C.35D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=alog2x+blog3x+2,解決下列問(wèn)題:
(1)求f(1)的值;
(2 )求$f(x)+f({\frac{1}{x}})$的值;
(3)計(jì)算:$f(1)+f(2)+f(3)+…+f(2013)+f({\frac{1}{2}})+f({\frac{1}{3}})+…+f({\frac{1}{2013}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若關(guān)于x的不等式ax2+3x-1<0的解集是$({-∞,\frac{1}{2}})∪({1,+∞})$,
(1)求a的值;
(2)求不等式ax2-3x+a2+1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.過(guò)兩點(diǎn)A(m2+2,3-m2),B(3-m-m2,-2m)的直線l的傾斜角為135°,則m的值為( 。
A.-1或-2B.-1C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.復(fù)數(shù)z滿足$z=\frac{1+i}{i}(i$是虛數(shù)單位),則|z|=( 。
A.lB.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知${log_a}^{\frac{1}{3}}<1$,那么a的取值范圍是(  )
A.$a>\frac{1}{3}$B.$0<a<\frac{1}{3}$C.$0<a<\frac{1}{3}$或a>1D.$\frac{1}{3}<a<1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.執(zhí)行如圖所示的偽代碼,則輸出的結(jié)果為20.

查看答案和解析>>

同步練習(xí)冊(cè)答案