【題目】在極坐標系中,點M的坐標為,曲線C的方程為;以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,斜率為的直線l經過點M

(I)求直線l和曲線C的直角坐標方程:

(II)P為曲線C上任意一點,直線l和曲線C相交于A,B兩點,求△PAB面積的最大值.

【答案】(1)直線方程為y=﹣x+3,曲線C的直角坐標方程為(x﹣1)2+(y﹣1)2=2;(2)

【解析】試題分析:(1)根據(jù)極坐標和直角坐標的互化公式得到直線方程為y=x+3,曲線C的直角坐標方程為(x12+y12=2;(2)由圖像的到圓上的點到直線L的距離最大值為,再計算弦長即三角形的底邊長,進而得到面積。

解析:

(1)∵在極坐標系中,點M的坐標為,

∴x=3cos=0,y=3sin=3,

∴點M的直角坐標為(0,3),

∴直線方程為y=﹣x+3,

,得ρ2=2ρsinθ+2ρcosθ,

∴曲線C的直角坐標方程為x2+y2﹣2x﹣2y=0,

即(x﹣1)2+(y﹣1)2=2

(2)圓心(1,1)到直線y=﹣x+3的距離,

∴圓上的點到直線L的距離最大值為,

而弦

∴△PAB面積的最大值為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點 , 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經過且與直線垂直的直線交此圓錐曲線, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求不等式;

(Ⅱ)若函數(shù)的最小值為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】讀下列各題所給的程序,依據(jù)程序畫出程序框圖,并說明其功能:

(1)INPUT “x=”;x

IF x>1 OR x<-1 THEN

y=1

ELSE y=0

END IF

PRINE y

END

(2)INPUT “輸入三個正數(shù)a,b,c=”;a,b,c

IF a+b>c AND a+c>b AND b+c>a THEN

p=(a+b+c)/2

S=SQR(p*(p-a)*(p-b)*(p-c))

PRINT “三角形的面積S=”S

ELSE

PRINT “構不成三角形”

END IF

END

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,橢圓 的上焦點為,橢圓的離心率為 ,且過點

1求橢圓的方程;

2設過橢圓的上頂點的直線與橢圓交于點不在軸上,垂直于的直線與交于點,與軸交于點,若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 為常數(shù)).

() 函數(shù)的圖象在點處的切線與函數(shù)的圖象相切,求實數(shù)的值;

(Ⅱ) 若, ,且,都有成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年“雙11”前夕,某市場機構隨機對中國公民進行問卷調查,用于調研“雙11”民眾購物意愿和購物預計支出狀況. 分類統(tǒng)計后,從有購物意愿的人中隨機抽取100人作為樣本,將他(她)們按照購物預計支出(單位:千元)分成8組: [0, 2),[2, 4),[4, 6),…,[14, 16],并繪制成如圖所示的頻率分布直方圖,其中,樣本中購物預計支出不低于1萬元的人數(shù)為a.

(Ⅰ) (i)求a的值,并估算這100人購物預計支出的平均值;

(ii)以樣本估計總體,在有購物意愿的人群中,若至少有65%的人購物預計支出不低于x千元,求x的最大值.

(Ⅱ) 如果參與本次問卷調查的總人數(shù)為t,問卷調查得到下列信息:

①參與問卷調查的男女人數(shù)之比為2:3;

②男士無購物意愿和有購物意愿的人數(shù)之比是1:3,女士無購物意愿和有購物意愿的人數(shù)之比為1:4;

③能以90%的把握認為“雙11購物意愿與性別有關”,但不能以95%的把握認為“雙11購物意愿與性別有關”.

根據(jù)以上數(shù)據(jù)信息,求t所有可能取值組成的集合M.

附: ,其中.

獨立檢驗臨界值表:

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案