(12分)已知函數(shù)
(1)求函數(shù)
的單調(diào)區(qū)間和值域。
(2)設
,求函數(shù)
,若對于任意
,總存在
,使得
成立,求實數(shù)
的取值范圍。
(1)增區(qū)間為
,減區(qū)間為
,值域
(2)
試題分析:(1)
,
,
由
得
且
,
由
得,
或
,
又已知
,
的增區(qū)間為
,減區(qū)間為
,
而
,且
在區(qū)間
上連續(xù),
的值域
. ……6分
(2)由
,得
,
,則
,
在區(qū)間
上是減函數(shù)。
的值域為
,
根據(jù)題意,有
,
則
,解得
,
實數(shù)
的取值范圍為
。 ……12分
點評:函數(shù)的定義域、值域、單調(diào)性、奇偶性、周期性等都是高考考查的重點,高考中一般在壓軸題的位置上出現(xiàn),要靈活運用各種思想方法和技巧解決問題.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
在原點相切,若函數(shù)的極小值為
;
(1)
(2)求函數(shù)的遞減區(qū)間。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,且
能表示成一個奇函數(shù)
和一個偶函數(shù)
的和.
(1)求
和
的解析式.
(2)命題
:函數(shù)
在區(qū)間
上是增函數(shù);命題
:函數(shù)
是減函數(shù),如果命題
、
有且僅有一個是真命題,求實數(shù)
的取值范圍.
(3)在(2)的條件下,比較
和
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
,
,若對于任一實數(shù)
,
與
的值至少有一個為正數(shù),則實數(shù)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設偶函數(shù)
的定義域為R,當
時,
是增函數(shù),則
的大小關系是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
定義在
上的函數(shù)
滿足以下條件:
(1)對任意
(2)對任意
.
以下不等式:①
;②
;③
;④
.其中一定成立的是
(請寫出所有正確的序號)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知函數(shù)
,其中e是自然數(shù)的底數(shù),
.
(1)當
時,解不等式
;
(2)當
時,求正整數(shù)k的值,使方程
在[k,k+1]上有解;
(3)若
在[-1,1]上是單調(diào)增函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知定義域為
的偶函數(shù)
在
上是減函數(shù),且
,則不等式
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
設
為實數(shù),且
(1)求方程
的解;
(2)若
,
滿足
,試寫出
與
的等量關系(至少寫出兩個);
(3)在(2)的基礎上,證明在這一關系中存在
滿足
.
查看答案和解析>>