【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明成立.

【答案】1)當(dāng)時(shí), 上單調(diào)遞增沒有極值;當(dāng)時(shí),上單調(diào)遞增,上單調(diào)遞減,極小值為;(2)證明見解析.

【解析】

1)對(duì)函數(shù)進(jìn)行求導(dǎo)得,分為兩種情形判別導(dǎo)數(shù)與0的關(guān)系即可得結(jié)果;

2)先得出,結(jié)合(1)知,設(shè),構(gòu)造函數(shù),通過導(dǎo)數(shù)判斷出的單調(diào)性,可得出,結(jié)合(1)中的單調(diào)性即可得出結(jié)果.

1)由

當(dāng)時(shí),從而得上單調(diào)遞增沒有極值;

當(dāng)時(shí),;

;

上單調(diào)遞增,上單調(diào)遞減,

此時(shí)有極小值,無極大值.

2)由得:,從而得

由(1)知當(dāng)時(shí),從而得上單調(diào)遞增,所以此時(shí)不成立

可知此時(shí),由于的極小值點(diǎn)為,可設(shè)

設(shè)

,僅當(dāng)時(shí)取得“

所以為單調(diào)遞增函數(shù)且

當(dāng),時(shí)有,即

又由,所以

又由(1)知上單調(diào)遞減,且

所以從而得證成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩城市相距,現(xiàn)計(jì)劃在兩城市外以為直徑的半圓上選擇一點(diǎn)建造垃圾處理場,其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為,建在處的垃圾處理場對(duì)城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理場對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場建在的中點(diǎn)時(shí),對(duì)城和城的總影響度為0.065

1)將表示成的函數(shù);

2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場對(duì)城和城的總影響度最小?若存在,求出該點(diǎn)到城的距離;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且離心率為

1)求橢圓的方程;

2)若斜率為的直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某摩托車生產(chǎn)企業(yè),上年度生產(chǎn)摩托車的投入成本為1萬元/輛,出廠價(jià)為1.2萬元/輛,年銷售量為1000輛.本年度為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為x0x1),則出廠價(jià)相應(yīng)的提高比例為0.75x,同時(shí)預(yù)計(jì)年銷售量增加的比例為0.6x.已知年利潤=(出廠價(jià)投入成本)×年銷售量.

1)寫出本年度預(yù)計(jì)的年利潤y與投入成本增加的比例x的關(guān)系式;

2)為使本年度的年利潤比上年有所增加,問投入成本增加的比例x應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)對(duì)序列、、,記,,其中表示兩個(gè)數(shù)中最大的數(shù).

1)對(duì)于數(shù)對(duì)序列,求,的值;

2)記、、、四個(gè)數(shù)中最小值,對(duì)于由兩個(gè)數(shù)對(duì)組成的數(shù)對(duì)序列、、,試分別對(duì)的兩種情況比較的大;

3)在由個(gè)數(shù)對(duì)、、、、組成的所有數(shù)對(duì)序列中,寫出一個(gè)數(shù)對(duì)序列使最小,并寫出的值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓C與兩圓中的一個(gè)內(nèi)切,另一個(gè)外切.

1)求C的圓心軌跡L的方程;

2)已知點(diǎn),,且PL上動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知曲線,曲線P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P“C1—C2型點(diǎn)

(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);

(2)設(shè)直線有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn);

(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的圖象有且僅有一個(gè)交點(diǎn),的值(其中表示不超過的最大整數(shù),.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)若點(diǎn)在直線上,且,求直線的斜率;

2)若,求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案