【題目】某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市名男生的身高服從正態(tài)分布.現(xiàn)從某學(xué)校高三年級(jí)男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于和之間,將測(cè)量結(jié)果按如下方式分組: , ,…, ,得到的頻率分布直方圖如圖所示.
(Ⅰ)試評(píng)估該校高三年級(jí)男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這名男生身高在以上(含)的人數(shù);
(Ⅲ)在這名男生身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全市前名的人數(shù)記力,求的數(shù)學(xué)期望.
參考數(shù)據(jù):若,則,
, .
【答案】(1)高于全市的平均值(2).
【解析】試題分析:(Ⅰ)利用頻率分布直方圖進(jìn)行求解;(Ⅱ)利用頻率分布直方圖得到后三組的頻率,再求出人數(shù)即可;(Ⅲ)先確定人中以上的有人,寫(xiě)出隨機(jī)變量的所有可能取值,利用超幾何分布得到每個(gè)變量的概率,利用期望公式進(jìn)行求解.
試題解析:(Ⅰ)由頻率分布直方圖,經(jīng)過(guò)計(jì)算該校高三年級(jí)男生平均身高為
,
高于全市的平均值(或者:經(jīng)過(guò)計(jì)算該校高三年級(jí)男生平均身高為,比較接近全市的平均值).
(Ⅱ)由頻率分布直方圖知,后三組頻率為,人數(shù)為,即這名男生身高在以上(含)的人數(shù)為人.
(Ⅲ)∵,
∴, .
所以,全市前名的身高在以上,這人中以上的有人.
隨機(jī)變量可取, , ,
于是
,
,
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過(guò)點(diǎn),曲線的參考方程為(為參數(shù)).
(1)求曲線上的點(diǎn)到直線的距離的最大值與最小值;
(2)過(guò)點(diǎn)與直線平行的直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)在拋物線上,已知以點(diǎn)為圓心, 為半徑的圓交于兩點(diǎn).
(Ⅰ)若, 的面積為4,求拋物線的方程;
(Ⅱ)若三點(diǎn)在同一條直線上,直線與平行,且與拋物線只有一個(gè)公共點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右有頂點(diǎn)分別是、,上頂點(diǎn)是,圓:的圓心到直線的距離是,且橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓的方程;
(Ⅱ)平行于軸的動(dòng)直線與橢圓和圓在第一象限內(nèi)的交點(diǎn)分別為、,直線、與軸的交點(diǎn)記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說(shuō)明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男人,女人),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)只能自由選擇其中一道題進(jìn)行解答.選題情況如下表(單位:人):
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
(1)能否據(jù)此判斷有的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的名女生中,任意抽取兩人,對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩位女生被抽到的人數(shù)為,求的分布列和.
附表及公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若對(duì)于,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線斜率為2.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)若在上無(wú)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 C: 的焦距為2,且過(guò)點(diǎn),右焦點(diǎn)為.設(shè)A,B 是C上的兩個(gè)動(dòng)點(diǎn),線段 AB 的中點(diǎn)M 的橫坐標(biāo)為,線段AB的中垂線交橢圓C于P,Q 兩點(diǎn).
(1)求橢圓 C 的方程;
(2)設(shè)M點(diǎn)縱坐標(biāo)為m,求直線PQ的方程,并求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com