已知數(shù)列{an}中,a1=3,a2=5,Sn為其前n項(xiàng)和,且滿足Sn+Sn-2=2Sn-1+2n-1(n≥3,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
n
an-1
,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)若f(x)=2x-1,cn=
1
anan+1
,Qn=c1f(1)+c2f(2)+…+cnf(n),求證Qn
1
6
(n∈N*).
分析:(1)由Sn+Sn-2=2Sn-1+2n-1an=an-1+2n-1(n≥3,n∈N*),利用累加法可求得an,注意驗(yàn)證a1=3,a2=5的情形;
(2)由(1)易求bn=
n
an-1
=
n
2n
,利用錯(cuò)位相減法可求得Tn;
(3)cnf(n)=
2n-1
(2n+1)(2n+1+1)
=
1
2
(
1
2n+1
-
1
2n+1+1
)(n∈N*)
,利用裂項(xiàng)相消法可求得Qn,然后適當(dāng)放縮可證明不等式;
解答:解:(1)由Sn+Sn-2=2Sn-1+2n-1an=an-1+2n-1(n≥3,n∈N*),
∵a2=5,∴當(dāng)n≥3時(shí),an=a2+(a3-a2)+(a4-a3)+…+(an-an-1)=5+22+23+…+2n-1=2n+1,
經(jīng)驗(yàn)證a1=3,a2=5也符合上式,
an=2n+1(n∈N*)
(2)由(1)可得bn=
n
an-1
=
n
2n
,
Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
1
2
Tn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1
②,
①-②有:
1
2
Tn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1
=1-
1
2n
-
n
2n+1

Tn=2-
n+2
2n
;
(3)∵f(x)=2x-1cn=
1
anan+1
,
cnf(n)=
2n-1
(2n+1)(2n+1+1)
=
1
2
(
1
2n+1
-
1
2n+1+1
)(n∈N*)
,
∴Qn=c1f(1)+c2f(2)+…+cnf(n)
=
1
2
[(
1
21+1
-
1
22+1
)+(
1
22+1
-
1
23+1
)+…+(
1
2n+1
-
1
2n+1+1
)]

=
1
2
(
1
1+2
-
1
2n+1+1
)<
1
2
×
1
3
=
1
6
點(diǎn)評(píng):本題考查數(shù)列與不等式的綜合、錯(cuò)位相減法及裂項(xiàng)相消法對(duì)數(shù)列求和,考查學(xué)生綜合運(yùn)用知識(shí)解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案