已知橢圓
x2
a2
+
y2
b2
=1的右頂點(diǎn)A到左右兩個(gè)焦點(diǎn)F1,F(xiàn)2距離分別為8和2.
(1)求橢圓的方程;
(2)設(shè)動(dòng)點(diǎn)P滿足PF22-PA2=4,求動(dòng)點(diǎn)P的軌跡方程.
考點(diǎn):軌跡方程,橢圓的標(biāo)準(zhǔn)方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用橢圓
x2
a2
+
y2
b2
=1的右頂點(diǎn)A到左右兩個(gè)焦點(diǎn)F1,F(xiàn)2距離分別為8和2,可得a+c=8,a-c=2,求出a,c,可得b,即可求橢圓的方程;
(2)設(shè)P(x,y),利用動(dòng)點(diǎn)P滿足PF22-PA2=4,化簡(jiǎn)求動(dòng)點(diǎn)P的軌跡方程.
解答: 解:(1)∵橢圓
x2
a2
+
y2
b2
=1的右頂點(diǎn)A到左右兩個(gè)焦點(diǎn)F1,F(xiàn)2距離分別為8和2,
∴a+c=8,a-c=2,
∴a=5,c=3,
∴b=4,
∴橢圓的方程為
x2
25
+
y2
16
=1
;
(2)設(shè)P(x,y),則
∵動(dòng)點(diǎn)P滿足PF22-PA2=4,
∴(x-3)2+y2-(x-5)2-y2=4,
∴動(dòng)點(diǎn)P的軌跡方程為x=5.
點(diǎn)評(píng):本題考查軌跡方程,考查橢圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,確定幾何量是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=lg
1-x
1+x
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l是y=sinx+3cosx在x=
π
4
處的切線,點(diǎn)(sinn
π
2
,an+
2
π
4
)在直線l上,則數(shù)列{an}的前30項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列方程的曲線不關(guān)于x軸對(duì)稱的是( 。
A、x2-x+y2=1
B、x2y+xy2=1
C、2x2-y2=1
D、x+y2=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若用長(zhǎng)度分別為1,1,1,1,x,x的六根筆直的鐵棒通過焊接其端點(diǎn)(不計(jì)損耗)可以得到兩種不同形狀的三棱錐形的鐵架,則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓臺(tái)的兩底面半徑分別是5cm和10cm,高為8cm,有一個(gè)過圓臺(tái)兩母線的截面沮上、下底面中心到截面與兩底面的交線的距離分別為3cm和6cm,求截面面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過球O表面上一點(diǎn)A,引三條長(zhǎng)度相等的弦AB、AC、AD,且兩兩夾角都為60°,若球半徑為R,求弦AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β都是銳角,且sin(α+β)=2sinα,求證:α<β.(用反證法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線交于點(diǎn)E,∠BAC的平分線與BC交于點(diǎn)D.
(1)求證:ED2=EC•EB
(2)若BC是△ABC的外接圓的直徑,且BC=2,CE=1.求AC長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案