【題目】在四棱錐P﹣ABCD中,AB⊥AD,CD⊥AD,PA⊥平面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn). (Ⅰ)求證:BM∥平面PAD;
(Ⅱ)平面PAD內(nèi)是否存在一點(diǎn)N,使MN⊥平面PBD?若存在,確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.
【答案】證明:(Ⅰ)如圖,取PD中點(diǎn)E,連接EM、AE, ∴EM CD,而AB CD,∴EM∥AB,
∴四邊形ABME是平行四邊形,∴BM∥AE
∵AE平面ADP,BM平面ADP,
∴BM∥平面PAD.
(Ⅱ)解:∵PA⊥平面ABCD,
∴PA⊥AB,而AB⊥AD,PA∩AD=A,
∴AB⊥平面PAD,∴AB⊥PD
∵PA=AD,E是PD的中點(diǎn),
∴PD⊥AE,AB∩AE=A,∴PD⊥平面ABME
作MN⊥BE,交AE于點(diǎn)N,則MN⊥平面PBD
由題意知△BME∽△MEN,而BM=AE= ,EM= CD=1,
由 = ,得EN= = = ,
∴AN= ,即點(diǎn)N為AE的中點(diǎn).
【解析】(Ⅰ)取PD中點(diǎn)E,連接EM、AE,由已知得四邊形ABME是平行四邊形,由此能證明BM∥平面PAD.(Ⅱ)由已知PA⊥AB,AB⊥AD,從而AB⊥平面PAD,進(jìn)而AB⊥PD,由此得到PD⊥平面ABME,作MN⊥BE,交AE于點(diǎn)N,則MN⊥平面PBD,從而求出點(diǎn)N為AE的中點(diǎn).
【考點(diǎn)精析】掌握直線與平面平行的判定和直線與平面垂直的性質(zhì)是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;垂直于同一個(gè)平面的兩條直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù) ,x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍縱坐標(biāo)不變)
B.向右平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變)
C.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變)
D.向右平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log2(5﹣x)﹣log2(5+x)+1+m
(1)若f(x)是奇函數(shù),求實(shí)數(shù)m的值.
(2)若m=0,則是否存在實(shí)數(shù)x,使得f(x)>2?若存在,求出x的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)棱錐的三視圖如圖,則該棱錐的全面積(單位:cm2)為( )
A.48+12
B.48+24
C.36+12
D.36+24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0且a≠1,函數(shù)y=logax,y=ax , y=x+a在同一坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+x+1(a>0)的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1 , x2 .
(1)證明:(1+x1)(1+x2)=1;
(2)證明:x1<﹣1,x2<﹣1;
(3)若x1 , x2滿足不等式|lg |≤1,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) ,則下列結(jié)論錯(cuò)誤的是( )
A.f(x)是偶函數(shù)
B.方程f(f(x))=x的解為x=1
C.f(x)是周期函數(shù)
D.方程f(f(x))=f(x)的解為x=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=x﹣4被拋物線y2=2mx(m≠0)截得的弦長(zhǎng)為 ,求拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com